Advertisement

Identification of Tumor Antigens by Using Proteomics

  • François Le Naour
Protocol
Part of the Methods in Molecular Biology™ book series (MIMB, volume 360)

Summary

The recent progress of proteomics has opened new avenues for tumor-associated antigen discovery. Here, I describe a two-dimensional (2D), gel-based Western blot approach for screening and identification of proteins eliciting a humoral response in cancer. Sera from patients are used in 2D Western blot experiments for screening of autoantibodies, and the immunoreactive target proteins are subsequently identified by mass spectrometry. Applied to several types of cancer, this proteomic-based approach has revealed a high frequency of autoantibodies in sera from cancer patients and has led to the identification of novel tumor antigens. Relevant examples are described.

Key Words

Autoantibodies mass spectrometry proteomics two-dimensional (2D) Western blot tumor antigens 

References

  1. 1.
    Happ, S. S. (1997) A Commotion in the Blood: Life, Death, and the Immune System. The Spoon Technology Series. Henry Holt and Company Inc., NY, NY.Google Scholar
  2. 2.
    Jager, E., Chen, Y. T., Drijfhout, J. W., et al. (1998) Simultaneous humoral and cellular immune response against cancer-testis antigen NY-ESO-1: definition of human histocompatibility leukocyte antigen (HLA)-A2-binding peptide epitopes. J. Exp. Med. 187, 265–270.CrossRefPubMedGoogle Scholar
  3. 3.
    Jager, D., Jager, E., and Knuth, A. (2001) Vaccination for malignant melanoma: recent developments. Oncology 60, 1–7.CrossRefPubMedGoogle Scholar
  4. 4.
    Nakatsura, T., Senju, S., Ito, M., Nishimura, Y., and Itoh, K. (2002) Cellular and humoral immune responses to a human pancreatic cancer antigen, coactosinlike protein, originally defined by the SEREX method. Eur. J. Immunol. 32, 826–836.CrossRefPubMedGoogle Scholar
  5. 5.
    van der Bruggen, P., Traversari, C., Chomez, P., et al. (1991) A gene encoding an antigen recognized by cytolytic T lymphocytes on a human melanoma. Science 254, 1643–1647.CrossRefPubMedGoogle Scholar
  6. 6.
    Renkvist, N., Castelli, C., Robbins, P. F., and Parmiani, G. (2001) A listing of human tumor antigens recognized by T cells. Cancer Immunol. Immunother. 50, 3–15.CrossRefPubMedGoogle Scholar
  7. 7.
    Sahin, U., Türeci, O., Schmitt, H., et al. (1995) Human neoplasms elicit multiple specific immune responses in the autologous host. Proc. Natl. Acad. Sci. USA 92, 11,810–11,813.CrossRefPubMedGoogle Scholar
  8. 8.
    Old, L. J. and Chen, Y. T. (1998) New paths in human cancer serology. J. Exp. Med. 187, 1163–1167.CrossRefPubMedGoogle Scholar
  9. 9.
    Türeci, O., Sahin, U., Zwick, C., Neumann, F., and Pfreundschuh M. (1999) Exploitation of the antibody repertoire of cancer patients for the identification of human tumor antigens. Hybridoma 18, 23–28.CrossRefPubMedGoogle Scholar
  10. 10.
    Chen, Y. T. (2000) Cancer vaccine: identification of human tumor antigens by SEREX. Cancer J. Sci. Am. 6, s208–s217.Google Scholar
  11. 11.
    Nishikawa, H., Tanida, K., Ikeda, H., et al. (2001) Role of SEREX-defined immunogenic wild-type cellular molecules in the development of tumor-specific immunity. Proc. Natl. Acad. Sci. USA 98, 14,571–14,576.CrossRefPubMedGoogle Scholar
  12. 12.
    Patterson, S. D. and Aebersold, R. H. (2003) Proteomics: the first decade and beyond. Nat. Genet. 33, Suppl, 311–323.CrossRefPubMedGoogle Scholar
  13. 13.
    Gharahdaghi, F., Weinberg, C. R., Meagher, D. A., Imai, B. S., and Mische, S. M. (1999) Mass spectrometric identification of proteins from silver-stained polyacrylamide gel: a method for the removal of silver ions to enhance sensitivity. Electrophoresis 20, 601–605.CrossRefPubMedGoogle Scholar
  14. 14.
    Shevchenko, A., Wilm, M., Vorm, O., and Mann, M. (1996) Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels. Anal. Chem. 68, 850–858.CrossRefPubMedGoogle Scholar
  15. 15.
    Le Naour, F., Misek, D. E., Krause, M. C., et al. (2001) Proteomics-based identification of RS/DJ-1 as a novel circulating tumor antigen in breast cancer. Clin. Cancer Res. 11, 3328–3335.Google Scholar
  16. 16.
    Brichory, F. M., Misek, D. E., Yim, A. M., et al. (2001) An immune response manifested by the common occurrence of annexins I and II autoantibodies and high circulating levels of IL-6 in lung cancer. Proc. Natl. Acad. Sci. USA 98, 9824–9829.CrossRefPubMedGoogle Scholar
  17. 17.
    Le Naour, F., Brichory, F., Misek, D. E., Bréchot, C., Hanash, S. M., and Beretta L. (2001) A distinct repertoire of autoantibodies in hepatocellular carcinoma identified by proteomic analysis. Mol. Cell Proteomics 1, 197–203.Google Scholar
  18. 18.
    Klade, C. S., Voss, T., Krystek, E., et al. (2001) Identification of tumor antigens in renal cell carcinoma by serological proteome analysis. Proteomics 1, 890–898.CrossRefPubMedGoogle Scholar
  19. 19.
    Lichtenfels, R., Kellner, R., Bukur, J., et al. (2002) Heat shock protein expression and anti-heat shock protein reactivity in renal cell carcinoma. Proteomics 2, 561–570.CrossRefPubMedGoogle Scholar
  20. 20.
    Prasannan, L., Misek, D. E., Hinderer, R., Michon, J., Geiger, J. D., and Hanash, S. M. (2000) Identification of β-tubulin isoforms as tumor antigens in neuroblastoma. Clin. Cancer Res. 6, 3949–3956.PubMedGoogle Scholar
  21. 21.
    Brichory, F., Beer D., Le Naour, F., Giordano, T., and Hanash, S. M. (2001) Proteomics-based identification of PGP 9.5 as a tumor antigen that induces a humoral immune response in lung cancer. Cancer Res. 61, 7908–7912.PubMedGoogle Scholar
  22. 22.
    Le Naour, F. (2001) Contribution of proteomics to tumor immunology. Proteomics 1, 1295–1302.CrossRefPubMedGoogle Scholar
  23. 23.
    Hanash, S., Brichory, F., and Beer, D. (2001) A proteomic approach to the identification of lung cancer markers. Dis. Markers 17, 295–300.PubMedGoogle Scholar
  24. 24.
    Shalhoub, P., Kern, S., Girard, S., and Beretta, L. (2001) Proteomic-based approach for the identification of tumor markers associated with hepatocellular carcinoma. Dis. Markers 17, 217–223.PubMedGoogle Scholar
  25. 25.
    Hong, S. H., Misek, D. E., Wang, H., et al. (2004) An autoantibody-mediated immune response to calreticulin isoforms in pancreatic cancer. Cancer Res. 64, 5504–5510.CrossRefPubMedGoogle Scholar
  26. 26.
    Rauch, J., Ahlemann, M., Schaffrik, M., et al. (2004) Allogenic antibody-mediated identification of head and neck cancer antigens. Biochem. Biophys. Res. Commun. 323, 156–162.CrossRefPubMedGoogle Scholar
  27. 27.
    Gires, O., Munz, M., Schaffrik, M., et al. (2004) Profile identification of disease-associated humoral antigens using AMIDA, a novel proteomics-based technology. Cell Mol. Life Sci. 61, 1198–1207.CrossRefPubMedGoogle Scholar
  28. 28.
    Henash, S. M. (2003) The emerging field of protein microarrays. Proteomics 3 (special issue), 2075.Google Scholar
  29. 29.
    Imafuku, Y., Omenn, G. S., and Hanash, S. (2004) Proteomics approaches to identify tumor antigen directed autoantibodies as cancer biomarkers. Dis. Markers 20, 149–153.PubMedGoogle Scholar
  30. 30.
    Qiu, J., Madoz-Gurpide, J., Misek, D. E., et al. (2004) Development of natural protein microarrays for diagnosing cancer based on an antibody response to tumor antigens. J. Proteome Res. 3, 261–267.CrossRefPubMedGoogle Scholar

Copyright information

© Humana Press Inc. 2007

Authors and Affiliations

  • François Le Naour
    • 1
  1. 1.INSERM V602Hôpital Paul BrousseVillejuifFrance

Personalised recommendations