Advertisement

Potential Target Antigens for Immunotherapy Identified by Serological Expression Cloning (SEREX)

  • Dirk Jäger
Protocol
Part of the Methods in Molecular Biology™ book series (MIMB, volume 360)

Summary

Immunotherapy in cancer relies on the identification and characterization of potential target antigens that can be recognized by effector cells of the immune system. Several strategies have been developed to identify such antigens, which then can be used for immunization strategies. Serological analysis of recombinant tumor cDNA expression libraries (SEREX) identifies tumor antigens based on a spontaneous humoral immune response in cancer patients. SEREX is not limited to tumor types that can be grown in cell culture nor does it depend on T-cell clones that recognize the autologous tumor. SEREX-defined antigens need to be evaluated following an algorithm of several analytical steps before they become new target antigens for active immunotherapy: expression analysis to evaluate tumor association, serological analysis with sera from tumor patients and normal individuals to prove tumor-associated immunogenicity, identification of potential peptide epitopes for CD8 and CD4 T-cells, and evaluation in T-cell assays to demonstrate their potential use as vaccine targets. We recently identified a new breast cancer differentiation antigen designated as NY-BR-1 in an autologous breast cancer SEREX screening. The different steps of further evaluation are summarized in this chapter.

Key Words

Immunotherapy serological analysis of recombinant tumor cDNA expression libraries SEREX reverse immunology tumor antigens 

References

  1. 1.
    Naito, Y., Saito, K., Shiiba, K., et al. (1998) CD8+ T cells infiltrated within cancer cell nests as a prognostic factor in human colorectal cancer. Cancer Res. 58, 3491–3494.PubMedGoogle Scholar
  2. 2.
    Nakano, O., Sato, M., Naito, Y., et al. (2001) Proliferative activity of intratumoral CD8(+) T-lymphocytes as a prognostic factor in human renal cell carcinoma: clinicopathologic demonstration of antitumor immunity. Cancer Res. 61, 5132–5136.PubMedGoogle Scholar
  3. 3.
    Schumacher, K., Haensch, W., Roefzaad, C., and Schlag, P. M. (2001) Prognostic significance of activated CD8(+) T cell infiltrations within esophageal carcinomas. Cancer Res. 61, 3932–3936.PubMedGoogle Scholar
  4. 4.
    Eerola, A. K., Soini, Y., and Paakko, P. (2000) A high number of tumor-infiltrating lymphocytes are associated with a small tumor size, low tumor stage, and a favorable prognosis in operated small cell lung carcinoma. Clin. Cancer Res. 6, 1875–1881.PubMedGoogle Scholar
  5. 5.
    van der Bruggen, P., Traversari, C., and Chomez, P. (1991) A gene encoding an antigen recognized by cytolytic T lymphocytes on a human melanoma. Science 254, 1643–1647.CrossRefPubMedGoogle Scholar
  6. 6.
    Boel, P., Wildmann, C., Sensi, M. L., et al. (1995) BAGE: a new gene encoding an antigen recognized on human melanomas by cytolytic T lymphocytes. Immunity 2, 167–175.CrossRefPubMedGoogle Scholar
  7. 7.
    Van den Eynde, B., Peeters, O., De Backer, O., Gaugler, B., Lucas, S., and Boon, T. (1995) A new family of genes coding for an antigen recognized by autologous cytolytic T lymphocytes on a human melanoma. J. Exp. Med. 182, 689–698.CrossRefPubMedGoogle Scholar
  8. 8.
    Boon, T. and van der Bruggen, P. (1996) Human tumor antigens recognized by T lymphocytes. J. Exp. Med. 183, 725–729.CrossRefPubMedGoogle Scholar
  9. 9.
    Scanlan, M. J., Gure, A. O., Jungbluth, A. A., Old, L. J., and Chen, Y. T. (2002) Cancer/testis antigens: an expanding family of targets for cancer immunotherapy. Immunol. Rev. 188, 22–32.CrossRefPubMedGoogle Scholar
  10. 10.
    Coulie, P. G., Brichard, V., Van Pel, A., et al. (1994) A new gene coding for a differentiation antigen recognized by autologous cytolytic T lymphocytes on HLA-A2 melanomas. J. Exp. Med. 180, 35–42.CrossRefPubMedGoogle Scholar
  11. 11.
    Brichard, V., Van Pel, A., Wolfel, T., et al. (1993) The tyrosinase gene codes for an antigen recognized by autologous cytolytic T lymphocytes on HLA-A2 melanomas. J. Exp. Med. 178, 489–495.CrossRefPubMedGoogle Scholar
  12. 12.
    Kawakami, Y., Eliyahu, S., Delgado, C. H., et al. (1994) Identification of a human melanoma antigen recognized by tumor-infiltrating lymphocytes associated with in vivo tumor rejection. Proc. Natl. Acad. Sci. USA 91, 6458–6462.CrossRefPubMedGoogle Scholar
  13. 13.
    Wang, R. F., Robbins, P. F., Kawakami, Y., Kang, X. Q., and Rosenberg, S. A. (1995) Identification of a gene encoding a melanoma tumor antigen recognized by HLA-A31-restricted tumor-infiltrating lymphocytes. [published erratum appears in J. Exp. Med. (1995) Mar 1;181(3),1261]. J. Exp. Med. 181, 799–804.CrossRefPubMedGoogle Scholar
  14. 14.
    Wolfel, T., Hauer, M., Schneider, J., et al. (1995) A p16INK4a-insensitive CDK4 mutant targeted by cytolytic T lymphocytes in a human melanoma. Science 269, 1281–1284.CrossRefPubMedGoogle Scholar
  15. 15.
    Gnjatic, S., Cai, Z., Viguier, M., Chouaib, S., Guillet, J. G., and Choppin, J. (1998) Accumulation of the p53 protein allows recognition by human CTL of a wild-type p53 epitope presented by breast carcinomas and melanomas. J. Immunol. 160, 328–333.PubMedGoogle Scholar
  16. 16.
    Jochmus, I., Osen, W., Altmann, A., et al. (1997) Specificity of human cytotoxic T lymphocytes induced by a human papillomavirus type 16 E7-derived peptide. J. Gen. Virol. 78(7), 1689–1695.PubMedGoogle Scholar
  17. 17.
    Rammensee, H. G., Weinschenk, T., Gouttefangeas, C., and Stevanovic, S. (2002) Towards patient-specific tumor antigen selection for vaccination. Immunol. Rev. 188, 164–176.CrossRefPubMedGoogle Scholar
  18. 18.
    Jager, E., Jager, D., and Knuth, A. (2002) Clinical cancer vaccine trials. Curr. Opin. Immunol. 14, 178–182.CrossRefPubMedGoogle Scholar
  19. 19.
    Jager, E., Nagata, Y., Gnjatic, S., et al. (2000) Monitoring CD8 T cell responses to NY-ESO-1: correlation of humoral and cellular immune responses. Proc. Natl. Acad. Sci. USA 97, 4760–4765.CrossRefPubMedGoogle Scholar
  20. 20.
    Jaeger, E., Bernhard, H., Romero, P., et al. (1996) Generation of cytotoxic T-cell responses with synthetic melanoma-associated peptides in vivo: implications for tumor vaccines with melanoma-associated antigens. Int. J. Cancer 66, 162–169.CrossRefPubMedGoogle Scholar
  21. 21.
    Jager, E., Chen, Y. T., Drijfhout, J. W., et al. (1998) A simultaneous humoral and cellular immune response against cancer-testis antigen NY-ESO-1: definition of human histocompatibility leukocyte antigen (HLA)-A2-binding peptide epitopes. J. Exp. Med. 187, 265–270.CrossRefPubMedGoogle Scholar
  22. 22.
    Jager, E., Gnjatic, S., Nagata, Y., et al. (2000) Induction of primary NY-ESO-1 immunity: CD8+ T lymphocyte and antibody responses in peptide-vaccinated patients with NY-ESO-1+ cancers. Proc. Natl. Acad. Sci. USA 97, 12,198–12,203.CrossRefPubMedGoogle Scholar
  23. 23.
    Jager, E., Ringhoffer, M., Dienes, H. P., et al. (1996) Granulocyte-macrophagecolony-stimulating factor enhances immune responses to melanoma-associated peptides in vivo. Int. J. Cancer 67, 54–62.CrossRefPubMedGoogle Scholar
  24. 24.
    Rosenberg, S. A., Yang, J. C., Schwartzentruber, D. J., et al. (1998) Immunologic and therapeutic evaluation of a synthetic peptide vaccine for the treatment of patients with metastatic melanoma. Nat. Med. 4, 321–327.CrossRefPubMedGoogle Scholar
  25. 25.
    Marchand, M., van Baren, N., Weynants, P., et al. (1999) Tumor regressions observed in patients with metastatic melanoma treated with an antigenic peptide encoded by gene MAGE-3 and presented by HLA-A1. Int. J. Cancer 80, 219–230.CrossRefPubMedGoogle Scholar
  26. 26.
    Sahin, U., Tureci, O., Schmitt, H., et al. (1995) Human neoplasms elicit multiple specific immune responses in the autologous host. Proc. Natl. Acad. Sci. USA 92, 11,810–11,813.CrossRefPubMedGoogle Scholar
  27. 27.
    Scanlan, M. J., Gout, I., Gordon, C.M., et al. (2001) Humoral immunity to human breast cancer: antigen definition and quantitative analysis of mRNA expression. Cancer Immunity 1, 4.PubMedGoogle Scholar
  28. 28.
    Ayyoub, M., Stevanovic, S., Sahin, U., et al. (2002) Proteasome-assisted identification of a SSX-2-derived epitope recognized by tumor-reactive CTL infiltrating metastatic melanoma. J. Immunol. 168, 1717–1722.PubMedGoogle Scholar
  29. 29.
    Tureci, O., Chen,Y. T., Sahin, U., et al. (1998) Expression of SSX genes in human tumors. Int. J. Cancer 77, 19–23.CrossRefPubMedGoogle Scholar
  30. 30.
    Chen,Y. T., Scanlan, M. J., Sahin, U., et al. (1997) A testicular antigen aberrantly expressed in human cancers detected by autologous antibody screening. Proc. Natl. Acad. Sci. USA 94, 1914–1918.CrossRefPubMedGoogle Scholar
  31. 31.
    Chen, Y. T., Gure, A. O., Tsang, S., et al. (1998) Identification of multiple cancer/testis antigens by allogeneic antibody screening of a melanoma cell line library. Proc. Natl. Acad. Sci. USA 95, 6919–6923.CrossRefPubMedGoogle Scholar
  32. 32.
    Tureci, O., Sahin, U., Zwick, C., Koslowski, M., Seitz, G., and Pfreundschuh, M. (1998) Identification of a meiosis-specific protein as a member of the class of cancer/testis antigens. Proc. Natl. Acad. Sci. USA 95, 5211–5216.CrossRefPubMedGoogle Scholar
  33. 33.
    Eichmuller, S., Usener, D., Dummer, R., Stein, A., Thiel, D., and Schadendorf, D. (2001) Serological detection of cutaneous T-cell lymphoma-associated antigens. Proc. Natl. Acad. Sci. USA 98, 629–634.CrossRefPubMedGoogle Scholar
  34. 34.
    Ono, T., Kurashige, T., Harada, N., et al. (2001) Identification of proacrosin binding protein sp32 precursor as a human cancer/testis antigen. Proc. Natl. Acad. Sci. USA 98, 3282–3287.CrossRefPubMedGoogle Scholar
  35. 35.
    Tureci, O., Sahin, U., Koslowski, M., et al. (2002) A novel tumour associated leucine zipper protein targeting to sites of gene transcription and splicing. Oncogene 21, 3879–3888.CrossRefPubMedGoogle Scholar
  36. 36.
    Cho, B., Lim, Y., Lee, D. Y., et al. (2002) Identification and characterization of a novel cancer/testis antigen gene CAGE. Biochem. Biophys. Res. Commun. 292, 715–726.CrossRefPubMedGoogle Scholar
  37. 37.
    Lee, S. Y., Obata, Y., Yoshida, M., et al. (2003) Immunomic analysis of human sarcoma. Proc. Natl. Acad. Sci. USA 100, 2651–2656.CrossRefPubMedGoogle Scholar
  38. 38.
    Jager, D., Stockert, E., Jager, E., et al. (2000) Serological cloning of a melanocyte rab guanosine 5′-triphosphate-binding protein and a chromosome condensation protein from a melanoma complementary DNA library. Cancer Res. 60, 3584–3591.PubMedGoogle Scholar
  39. 39.
    Jager, D., Stockert, E., Gure, A. O., et al. (2001) Identification of a tissue-specific putative transcription factor in breast tissue by serological screening of a breast cancer library. Cancer Res. 61, 2055–2061.PubMedGoogle Scholar

Copyright information

© Humana Press Inc. 2007

Authors and Affiliations

  • Dirk Jäger
    • 1
  1. 1.Medizinische Onkologie, Nationales Centrum für TumorerkrankungenUniversitätsklinikum HeidelbergHeidelbergGermany

Personalised recommendations