Advertisement

Discovery of Differentially Expressed Genes

Technical Considerations
  • Øystein Røsok
  • Mouldy Sioud
Part of the Methods in Molecular Biology™ book series (MIMB, volume 360)

Summary

Identification and characterization of differentially expressed genes may be an important first step toward the understanding of both normal physiology and disease. A multitude of techniques belonging to two main categories have been developed to identify the differences in gene expression between samples from different biological origin: selection techniques and global techniques. Whereas the selection techniques strive to identify specific differentially expressed genes, the global techniques analyze the total transcriptome or a major part of the RNA population in a defined biological material. By exploiting the known sequences of the adaptors used in suppressive subtraction hybridization technique, a strategy named novel rescue—suppression-subtractive hybridization was developed. It should facilitate the discovery of differentially expressed genes.

Key Words

Differential display microarray representational difference analysis (RDA) serial analysis of gene expression (SAGE) target discovery target identification 

References

  1. 1.
    Saiki, R. K., Scharf, S., Faloona, F., et al. (1985) Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science 230, 1350–1354.CrossRefPubMedGoogle Scholar
  2. 2.
    Kacharmina, J. E., Crino, P. B., and Eberwine, J. (1999) Preparation of cDNA from single cells and subcellular regions. Methods Enzymol. 303, 3–18.CrossRefPubMedGoogle Scholar
  3. 3.
    Liu, M., Subramanyam, Y. V., and Baskaran, N. (1999) Preparation and analysis of cDNA from a small number of hematopoietic cells. Methods Enzymol. 303, 45–55.CrossRefPubMedGoogle Scholar
  4. 4.
    Sambrook, J., Fritsch, E., and Maniatis, T. (1989) Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring, NY.Google Scholar
  5. 5.
    Sargent, T. D. and Dawid, I. B. (1983) Differential gene expression in the gastrula of Xenopus laevis. Science 222, 135–139.CrossRefPubMedGoogle Scholar
  6. 6.
    Timberlake, W. E. (1980) Developmental gene regulation in Aspergillus nidulans. Dev. Biol. 78, 497–510.CrossRefPubMedGoogle Scholar
  7. 7.
    Hedrick, S. M., Cohen, D. I., Nielsen, E. A., and Davis, M. M. (1984) Isolation of cDNA clones encoding T cell-specific membrane-associated proteins. Nature 308, 149–153.CrossRefPubMedGoogle Scholar
  8. 8.
    Sagerstrom, C. G., Sun, B. I., and Sive, H. L. (1997) Subtractive cloning: past, present, and future. Annu. Rev. Biochem. 66, 751–783.CrossRefPubMedGoogle Scholar
  9. 9.
    Rubenstein, J. L., Brice, A. E., Ciaranello, R. D., Denney, D., Porteus, M. H., and Usdin, T. B. (1990) Subtractive hybridization system using single-stranded phagemids with directional inserts. Nucleic Acids Res. 18, 4833–4842.CrossRefPubMedGoogle Scholar
  10. 10.
    Rothstein, J. L., Johnson, D., Jessee, J., et al. (1993) Construction of primary and subtracted cDNA libraries from early embryos. Methods Enzymol. 225, 587–610.CrossRefPubMedGoogle Scholar
  11. 11.
    Houge, G. (1993) Simplified construction of a subtracted cDNA library using asymmetric PCR. PCR Methods Appl. 2, 204–209.PubMedGoogle Scholar
  12. 12.
    Wang, Z. and Brown, D. D. (1991) A gene expression screen. Proc. Natl. Acad. Sci. USA 88, 11,505–11,509.CrossRefPubMedGoogle Scholar
  13. 13.
    Yokota, H. and Oishi, M. (1990) Differential cloning of genomic DNA: cloning of DNA with an altered primary structure by in-gel competitive reassociation. Proc. Natl. Acad. Sci. USA 87, 6398–63402.CrossRefPubMedGoogle Scholar
  14. 14.
    Hubank, M. and Schatz, D. G. (1999) cDNA representational difference analysis: a sensitive and flexible method for identification of differentially expressed genes. Methods Enzymol. 303, 325–349.CrossRefPubMedGoogle Scholar
  15. 15.
    Lisitsyn, N., Lisitsyn, N., and Wigler, M. (1993) Cloning the differences between two complex genomes. Science 259, 946–951.CrossRefPubMedGoogle Scholar
  16. 16.
    Hubank, M. and Schatz, D. G. (1994) Identifying differences in mRNA expression by representational difference analysis of cDNA. Nucleic Acids Res. 22, 5640–5648.CrossRefPubMedGoogle Scholar
  17. 17.
    Diatchenko, L., Lau, Y. F., Campbell, A. P., et al. (1996) Suppression subtractive hybridization: a method for generating differentially regulated or tissue-specific cDNA probes and libraries. Proc. Natl. Acad. Sci. USA 93, 6025–6030.CrossRefPubMedGoogle Scholar
  18. 18.
    Siebert, P. D., Chenchik, A., Kellogg, D. E., Lukyanov, K. A., and Lukyanov, S. A. (1995) An improved PCR method for walking in uncloned genomic DANN. Nucleic Acids Res. 23, 1087, 1088.CrossRefPubMedGoogle Scholar
  19. 19.
    Gurskaya, N. G., Diatchenko, L., Chenchik, A., et al. (1996) Equalizing cDNA subtraction based on selective suppression of polymerase chain reaction: cloning of Jurkat cell transcripts induced by phytohemaglutinin and phorbol 12-myristate 13-acetate. Anal. Biochem. 240, 90–97.CrossRefPubMedGoogle Scholar
  20. 20.
    Lukyanov, K., Diatchenko, L., Chenchik, A., et al. (1997) Construction of cDNA libraries from small amounts of total RNA using the suppression PCR effect. Biochem. Biophys. Res. Commun. 230, 285–288.CrossRefPubMedGoogle Scholar
  21. 21.
    Leirdal, M., Shadidy, M., Rosok, O., and Sioud, M. (2004) Identification of genes differentially expressed in breast cancer cell line SKBR3: potential identification of new prognostic biomarcers. Int. J. Mol. Med. 14, 217–222.PubMedGoogle Scholar
  22. 22.
    Liang, P. and Pardee, A. B. (1992) Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction. Science 257, 957–971.CrossRefGoogle Scholar
  23. 23.
    Liang, P., Zhu, W., Zhang, X., et al. (1994) Differential display using one-base anchored oligo-dT primers. Nucleic Acids Res. 22, 5763, 5764.CrossRefPubMedGoogle Scholar
  24. 24.
    Martin, K. J. and Pardee, A. B. (1999) Principles of differential display. Methods Enzymol. 303, 234–258.CrossRefPubMedGoogle Scholar
  25. 25.
    Welsh, J., Chada, K., Dalal, S. S., Cheng, R., Ralph, D., and McClelland, M. (1992) Arbitrarily primed PCR fingerprinting of RNA. Nucleic Acids Res. 20, 4965–4970.CrossRefPubMedGoogle Scholar
  26. 26.
    Wang, X. and Feuerstein, G. Z. (1995) Direct sequencing of DNA isolated from mRNA differential display. BioTechniques 18, 448–453.PubMedGoogle Scholar
  27. 27.
    Liang, P. and Pardee, A. B. (1995) Recent advances in differential display. Curr. Opin. Immunol. 7, 274–280.CrossRefPubMedGoogle Scholar
  28. 28.
    Liang, P. (1998) Factors ensuring successful use of differential display. Methods 16, 361–364.CrossRefPubMedGoogle Scholar
  29. 29.
    Cho, Y.-J., Prezioso, V. R., and Liang, P. (2002) Systematic analysis of intrinsic factors affecting differential display. BioTechniques 32, 762–766.PubMedGoogle Scholar
  30. 30.
    Rosok, O., Odeberg, J., Rode, M., et al. (1996) Solid-phase method for differential display of genes expressed in hematopoietic stem cells. BioTechniques 21, 114–121.PubMedGoogle Scholar
  31. 31.
    Sompayrac, L., Jane, S., Burn, T. C., Tenen, D. G., and Danna, K. J. (1995) Overcomming limitations of the mRNA differential display technique. Nucleic Acids Res. 23, 4738–4739.CrossRefPubMedGoogle Scholar
  32. 32.
    Luce, M. J. and Burrows, P. D. (1998) Minimizing false positives in differential display. BioTechniques 24, 766–768.PubMedGoogle Scholar
  33. 33.
    Bosch, I., Melichar, H., and Pardee, A. B. (2000) Identification of differentially expressed genes from limited amounts of RNA. Nucleic Acids Res. 28, E27.CrossRefPubMedGoogle Scholar
  34. 34.
    Adams, M. D., Kelley, J. M., Gocayne, J. D., et al. (1991) Complementary DNA sequencing: expressed sequence tags and human genome project. Science 252, 1651–1656.CrossRefPubMedGoogle Scholar
  35. 35.
    Wilcox, A. S., Khan, A. S., Hopkins, J. A., and Sikela, J. M. (1991) Use of 3′ untranslated sequences of human cDNAs for rapid chromosome assignment and conversion to STSs: implications for an expression map of the genome. Nucleic Acids Res. 19, 1837–1843.CrossRefPubMedGoogle Scholar
  36. 36.
    Adams, M. D., Kerlavage, A. R., Fleischmann, R. D., et al. (1995) Initial assessment of human gene diversity and expression patterns based upon 83 million nucleotides of cDNA sequence. Nature 377 (Suppl.), 3–174.PubMedGoogle Scholar
  37. 37.
    Hastie, N. D. and Bishop, J. O. (1976) The expression of three abundance classes of messenger RNA in mouse tissues. Cell 9, 761–764.CrossRefPubMedGoogle Scholar
  38. 38.
    Zhang, L., Zhou, W., Velculescu, et al. (1997) Gene expression profiles in normal and cancer cells. Science 276, 1268–1272.CrossRefPubMedGoogle Scholar
  39. 39.
    Bonaldo, M. F., Lennon, G., and Soares, M. B. (1996) Normalization and subtraction: two approaches to facilitate gene discovery. Genome Res. 6, 791–806.CrossRefPubMedGoogle Scholar
  40. 40.
    Soares, M. B., Bonaldo, M. F., Jelene, P., Su, L., Lawton, L., and Efstratiadis, A. (1994) Construction and characterization of a normalized cDNA library. Proc. Natl. Acad. Sci. USA 91, 9228–9232.CrossRefPubMedGoogle Scholar
  41. 41.
    Berry, R., Stevens, T. J., Walter, N. A., et al. (1995) Gene-based sequence-tagged-sites (STSs) as the basis for a human gene map. Nat. Genet. 10, 415–423.CrossRefPubMedGoogle Scholar
  42. 42.
    Houlgatte, R., Mariage-Samson, R., Duprat, S., et al. (1995) The Genexpress index: a resource for gene discovery and the genic map of the human genome. Genome Res. 5, 272–304.CrossRefPubMedGoogle Scholar
  43. 43.
    Velculescu, V. E., Zhang, L., Vogelstein, B., and Kinzler, K. W. (1995) Serial analysis of gene expression. Science 270, 484–487.CrossRefPubMedGoogle Scholar
  44. 44.
    Yamamoto, M., Wakatsuki, T., Hada, A., and Ryo, A. (2001) Use of serial analysis of gene expression (SAGE) technology. J. Immunol. Methods 250, 45–66.CrossRefPubMedGoogle Scholar
  45. 45.
    Silva, A. P., De Souza, J. E., Galante, P. A., Riggins, G. J., De Souza, S. J., and Camargo, A. A. (2004) The impact of SNPs on the interpretation of SAGE and MPSS experimental data. Nucleic Acids Res. 32, 6104–6110.CrossRefPubMedGoogle Scholar
  46. 46.
    Saha, S., Sparks, A. B., Rago, C., et al. (2002) Using the transcriptome to annotate the genome. Nat. Biotechnol. 20, 508–512.CrossRefPubMedGoogle Scholar
  47. 47.
    Unneberg, P., Wennborg, A., and Larsson, M. (2003) Transcript identification by analysis of short sequence tags—influence on tag length, restriction site and transcript database. Nucleic Acid Res. 31, 2217–2226.CrossRefPubMedGoogle Scholar
  48. 48.
    Datson, N. A., van der Perk-de Jong, J., van den Berg, M. P., de Kloet, E. R., and Vreugdenhil, E. (1999) MicroSAGE: a modified procedure for serial analysis of gene expression in limited amounts of tissue. Nucleic Acids Res. 27, 1300–1307.CrossRefPubMedGoogle Scholar
  49. 49.
    Peters, D. G., Kassam, A. B., Yonas, H., O’Hare, E. H., Ferrell, R. E., and Brufsky, A. M. (1999) Comprehensive transcript analysis in small quantities of mRNA by SAGE-lite. Nucleic Acids Res. 27, e39.CrossRefPubMedGoogle Scholar
  50. 50.
    Ye, S. Q., Zhang, L. Q., Zheng, F., Virgil, D., and Kwiterovich, P. O. (2000) miniSAGE: gene expression profiling using serial analysis of gene expression from 1 microg total RNA. Anal. Biochem 287, 1444–1452.CrossRefGoogle Scholar
  51. 51.
    Brenner, S., Johnson, M., Bridgham, J., et al. (2000) Gene expression analysis by massively parallell signature sequencing (MPSS) on microbead arrays. Nat. Biotechnol. 18, 630–634.CrossRefPubMedGoogle Scholar
  52. 52.
    Schena, M., Shalon, D., Davis, R. W., and Brown, P. O. (1995) Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270, 467–470.CrossRefPubMedGoogle Scholar
  53. 53.
    Chee, M., Yang, R., Hubbell, E., et al. (1996) Accessing genetic information with high-density DNA arrays. Science 274, 610–614.CrossRefPubMedGoogle Scholar
  54. 54.
    Duggan, D. J., Brittner, M., Chen, Y., Meltzer, P., and Trent, J. H. (1999) Expression profiling using cDNA microarrays. Nat. Genet. 21(Suppl. 1), 10–14.CrossRefPubMedGoogle Scholar
  55. 55.
    Schulze, A. and Downward, J. (2001) Navigating gene expression using microarrays—a technical review. Nat. Cell Biol. 3, E190–E195.CrossRefPubMedGoogle Scholar
  56. 56.
    Chung, C. H., Bernard, P. S., and Peron, C. M. (2002) Molecular portraits and the family tree of cancer. Nat. Genet. 32(Suppl. 2), 533–540.CrossRefPubMedGoogle Scholar
  57. 57.
    Weeraratna, A. T., Nagel, J. E., de Mello-Coelho, V., and Taub, D. D. (2004) Gene expression profiling: from microarrays to medicine. J. Clin. Immunol. 24, 213–224.CrossRefPubMedGoogle Scholar
  58. 58.
    Penn, S. G., Rank, D. R., Hanzel, D. K., and Barker, D. L. (2000) Mining the human genome using microarrays of open reading frames. Nat. Genet. 26, 315–318.CrossRefPubMedGoogle Scholar

Copyright information

© Humana Press Inc. 2007

Authors and Affiliations

  • Øystein Røsok
    • 1
  • Mouldy Sioud
    • 1
  1. 1.Department of Immunology, Institute for Cancer Research, The Norwegian Radium HospitalUniversity of OsloOsloNorway

Personalised recommendations