Main Approaches to Target Discovery and Validation

  • Mouldy Sioud
Part of the Methods in Molecular Biology™ book series (MIMB, volume 360)


The identification and validation of disease-causing target genes is an essential first step in drug discovery and development. Genomics and proteomics technologies have already begun to uncover novel functional pathways and therapeutic targets in several human diseases such as cancers and autoimmunity. Also, bioinformatics approaches have highlighted several key targets and functional networks. In contrast to gene-profiling approaches, phenotype-oriented target identification allows direct link between the genetic alterations and a disease phenotype. Therefore, identified genes are more likely to be a cause rather than a consequence of the disease. Once a gene target or a mechanistic pathway is identified, the next step is to demonstrate that it does play a critical role in disease initiation, perpetuation, or both. A range of strategies exists for modulating gene expression in vitro and in vivo. These strategies include the use of antibodies, negative dominant controls, antisense oligonucleotides, ribozymes, and small-interfering RNAs. In contrast to in vitro assays, mouse reverse genetics such as knockout phenotypes has become a powerful approach for deciphering gene function and target validation in the context of mammalian physiology. In addition to disease-causing genes, the identification of antigens that stimulate both arms of the immune system is the major goal for effective vaccine development. The hope is that target discovery and validation processes will concurrently identify and validate therapeutic targets for drug intervention in human diseases.

Key Words

Bioinformatics genomics microarray protemics target discovery target validation transgenic animals tumor antigens 


  1. 1.
    Chanda, S. K. and Caldwell, J. S. (2003) fulfilling the promise: drug discovery in the post-genomic era. Drug Discov. Today 8, 168–174.CrossRefPubMedGoogle Scholar
  2. 2.
    Segal, E., Fiedman, N., Kaminski, N., Regev, A., and Koller, D. (2005) From signatures to models: understanding cancer using microarrays. Nat. Genet. 37, S38–S45.CrossRefPubMedGoogle Scholar
  3. 3.
    Perou, C. M., Sørlie, T., Eisen, M. B., et al. (2000) Molecular portraits of human breast tumours. Nature 406, 747–752.CrossRefPubMedGoogle Scholar
  4. 4.
    Boon, K., Osorio, E. C., Greenhut, S. F., et al. (2002) An anatomy of normal and malignant gene expression. Proc. Natl. Acad. Sci. USA 99, 11,287–11,292.CrossRefPubMedGoogle Scholar
  5. 5.
    Lash, A. E., Tolstoshev, C. M., Wagner, L., et al. (2000) SAGEmap: a public gene expression resource. Genome Res. 10, 1051–1060.CrossRefPubMedGoogle Scholar
  6. 6.
    Loging, W. T., Lal, A., Siu, I. M., et al. (2000) Identifying potential tumor markers and antigens by database mining and rapid expression screening. Genome Res. 10, 1393–1402.CrossRefPubMedGoogle Scholar
  7. 7.
    de Hoog, C. L. and Mann, M. (2004) Proteomics. Annu. Rev. Genomics Hum. Genet. 5, 267–293.CrossRefPubMedGoogle Scholar
  8. 8.
    Brazhnik, P., de la Fuente, A., and Mendes, P. (2002) Gene networks: how to put the function in genomics. Trends Biotechnol. 20, 467–472.CrossRefPubMedGoogle Scholar
  9. 9.
    Odeberg, J., Wood, T., Blucher, A., Rafter, J., Norstedt, G., and Lundeberg, J. (2000) A cDNA RDA protocol using solid-phase technology suited for analysis in small tissue samples. Biomol. Eng. 17, 1–9.CrossRefPubMedGoogle Scholar
  10. 10.
    Patzke, S., Hauge, H., Sioud, M., et al. (2005) Identification of a novel centrosome/microtubule-associated coiled-coil protein involved in cell-cycle progression and spindle organization. Oncogene 24, 1159–1173.CrossRefPubMedGoogle Scholar
  11. 11.
    McDevitt, H. O. (1998) The role of MHC class II molecules in susceptibility and resistance to autoimmunity. Curr. Opin. Immunol. 10, 677–681.CrossRefPubMedGoogle Scholar
  12. 12.
    Nebert, D. W., Jorge-Nebert, L., and Vesell, E. S. (2003) Pharmacogenomics and “individualized drug therapy”: high expectations and disappointing achievements. Am. J. Pharmacogenomics 3, 361–370.CrossRefPubMedGoogle Scholar
  13. 13.
    Magin, T. M. (1998) Lessons from keratin transgenic and knockout mice. Subcell. Biochem. 31, 141–172.PubMedGoogle Scholar
  14. 14.
    Hrabe de Angelis, M. H., Flaswinkel, H., Fuchs, H., et al. (2000) Genome-wide, large-scale production of mutant mice by ENU mutagenesis. Nat. Genet. 25, 444–447.CrossRefPubMedGoogle Scholar
  15. 15.
    Balling, R. (2001) ENU mutagenesis: analyzing gene function in mice. Annu. Rev. Genomics Hum. Genet. 2, 463–492.CrossRefPubMedGoogle Scholar
  16. 16.
    Sioud, M. (2004) Therapeutic siRNAs. Trends Pharmacol. Sci. 25, 22–28.CrossRefPubMedGoogle Scholar
  17. 17.
    Fire, A., Xu, S., Montgomery, M. K., Kostas, S. A., Driver, S. E., and Mello, C. C. (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391, 806–811.CrossRefPubMedGoogle Scholar
  18. 18.
    Elbashir, S. M., Harborth, M. J., Ledecknel, W., Yalcin, A., Weber, K., and Tuchl, T. (2001) Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411, 494–498.CrossRefPubMedGoogle Scholar
  19. 19.
    Berns, K., Hijmans, E. M., Mullenders, J., et al. (2004) A large-scale RNAi screen in human cells identifies new compounds of the p53 pathway. Nature 428, 431–437.CrossRefPubMedGoogle Scholar
  20. 20.
    Zheng, L., Liu, J., Batalov, S., et al. (2004) An approach to genomewide screens of expressed small interfering RNAs in mammalian cells. Proc. Natl. Acad. Sci. USA 101, 135–140.CrossRefPubMedGoogle Scholar
  21. 21.
    Zambrowicz, B. P. and Sands, A. T. (2003) Knockouts model the 100 best-selling Drug—will they model the next 100? Nature 2, 38–51.Google Scholar
  22. 22.
    Abu-Eheiga, L., Malzuk, M. M., Abo-Hasema, K. A. H., and Wakil, S. J. (2001) Continuous fatty acid oxidation and reduced fat storage in mice lacking acetyl-CoA carboxylase 2. Science 291, 2613–2616.CrossRefGoogle Scholar
  23. 23.
    Resing, K. A. and Ahn, N. G. (2005) Proteomics strategies for protein identification. FEBS Lett. 579, 885–889.CrossRefPubMedGoogle Scholar
  24. 24.
    Sahin, U., Tureci, O., Schmitt, H., et al. (1995) Human neoplasms elicit multiple specific immune responses in the autologous host. Proc. Natl. Acad. Sci. USA 92, 11,810–11,813.CrossRefPubMedGoogle Scholar
  25. 25.
    Jäger, D., Stockert, E., Gure, A. O., et al. (2001) Identification of a tissue-specific putative transcription factor in breast tissue by serological screening of a breast cancer library. Cancer Res. 61, 6197–6204.Google Scholar
  26. 26.
    Hansen, M. H., Østenstad, B., and Sioud, M. (2001) Antigen-specific IgG antibodies in stage IV long-term survival breast cancer patients. Mol. Med. 7, 230–239.PubMedGoogle Scholar
  27. 27.
    Sioud, M. and Hansen, M. H. (2001) Profiling the immune response in patients with breast cancer by phage-displayed cDNA libraries. Eur. J. Immunol. 31, 716–725.CrossRefPubMedGoogle Scholar
  28. 28.
    Cekaite, L., Haug, O., Myklebost, O., et al. (2004) Analysis of the humoral immune response to immunoselected phage-displayed peptides by a microarray-based method. Proteomics 4, 2572–2582.CrossRefPubMedGoogle Scholar
  29. 29.
    Sioud, M. (2005) Induction of inflammatory cytokines and interferon responses by double-stranded and single-stranded siRNAs is sequence-dependent and requires endosomal localization. J. Mol. Biol. 348, 1079–1090.CrossRefPubMedGoogle Scholar
  30. 30.
    Williams, R. O. (1998) Rodent models of arthritis: relevance for human disease. Clin. Exp. Immunol. 114, 330–332.CrossRefPubMedGoogle Scholar
  31. 31.
    Smolen, J. S. and Steiner, G. (2003) Therapeutic strategies for rheumatoid arthritis. Nat. Rev. Drug Discov. 2, 473–488.CrossRefPubMedGoogle Scholar

Copyright information

© Humana Press Inc. 2007

Authors and Affiliations

  • Mouldy Sioud
    • 1
  1. 1.Department of Immunology, Institute for Cancer Research, The Norwegian Radium HospitalUniversity of OsloOsloNorway

Personalised recommendations