Skip to main content

Establishment of Cell Lines That Exhibit Correct Ontogenic Stage-Specific Gene Expression Profiles From Tissues of Yeast Artificial Chromosome Transgenic Mice Using Chemically Induced Growth Signals

  • Protocol
YAC Protocols

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 349))

  • 756 Accesses

Abstract

Transgenic mice produced with human yeast artificial chromosomes (YACs) generally display transgene expression patterns that reflect those of the normal human host. Because mice are expensive and time-consuming to generate and maintain, extensive mutation-phenotype correlation studies cannot be readily carried out. Cell lines are better suited for analysis of a plethora of mutations. However, these types of gene regulatory studies have been complicated by the lack of suitable cell lines, most of which do not exactly replicate the gene expression patterns observed in vivo. We reasoned that cells established from tissues of YAC transgenic mice might express the transgenes in the correct tissue and developmental stage-specific pattern from which they were derived because YAC transgenic mice display correct regulation of gene expression during ontogeny. We used our human β-globin locus YAC (β-YAC) transgenic mice to demonstrate this approach. All existing erythroid cell lines coexpress β-like globins from different developmental stages or express them inappropriately based on the developmental stage from which they were obtained. Cell populations were established from the adult bone marrow (BM) of β-YAC transgenic mice, which express exclusively adult β-globin, using dimerizer technology. A derivative of the thrombopoietin receptor (mpl) was used to bring the proliferative status of primary BM marrow cells under the control of a small molecule drug called a chemical inducer of dimerization (CID). Cells generated in this manner can be expanded to extremely large numbers, remain strictly CID-dependent, and retain megakaryocytic, erythroid, and granulocytic potential. Marrow cells transduced with a retrovirus vector encoding the mpl derivative proliferated extensively in the presence of the CID, AP20187. RNAse protection assays demonstrated that the transcripts for human β-globin and mouse α-globin were present, while γ-globin transcripts were absent, thus, these cells had the predicted expression phenotype. Exposure to 5-azacytidine or introduction of a hereditary persistence of fetal hemoglobin mutation activated γ-globin, which was expressed in addition to β-globin, again consistent with the predicted expression profile of these cells. This approach extends the usefulness of YAC transgenic mice for the generation of cell lines amenable to more detailed studies regarding gene regulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jakobovits, A., Lamb, B. T., and Peterson, K. R. (1999) Production of transgenic mice with yeast artificial chromosomes, in Methods in Molecular Biology, Vol. 136: Developmental Biology Protocols, Vol. II (Tuan, R. S. and Lo, C. W., eds.), Humana Press, Totowa, NJ, pp. 435–453.

    Google Scholar 

  2. Giraldo P. and Montoliu L. (2001) Size matters: use of YACs, BACs and PACs in transgenic animals. Transgenic Research 10, 83–103.

    Article  CAS  PubMed  Google Scholar 

  3. Peterson, K. R. (2003) Transgenic mice carrying yeast artificial chromosomes. Expert Rev. Molec. Med. 5, 1–25.

    Google Scholar 

  4. Vassilopoulos, G., Navas, P. A, Skarpidi, E., et al. (1999) Correct function of the locus control region may require passage through a nonerythroid cellular environment. Blood 93, 703–712.

    CAS  PubMed  Google Scholar 

  5. Spencer, D. M., Wandless, T. J., Schreiber, S. L., and Crabtree, G. R. (1993) Controlling signal transduction with synthetic ligands. Science 262, 1019–1024.

    Article  CAS  PubMed  Google Scholar 

  6. Pruschy, M. N., Spencer, D. M., Kapoor, T. M., Miyake, H., Crabtree, G. R., and Schreiber, S. L. (1994) Mechanistic studies of a signaling pathway activated by the organic dimerizer FK1012. Chem. Biol. 1, 16–172.

    Article  Google Scholar 

  7. Spencer, D. M., Graef, I., Austin, D. J., Schreiber, S. L., and Crabtree, G. R. (1995) A general strategy for producing conditional alleles of Src-like tyrosine kinases. Proc. Natl. Acad. Sci. USA 92, 9805–9809.

    Article  CAS  PubMed  Google Scholar 

  8. Holsinger, L. J., Spencer, D. M., Austin, D. J., Schreiber, S. L., and Crabtree, G. R. (1995) Signal transduction in T lymphocytes using a conditional allele of Sos. Proc. Natl. Acad. Sci. USA 92, 9810–9814.

    Article  CAS  PubMed  Google Scholar 

  9. Belshaw, P. J., Ho, S. N., Crabtree, G. R., and Schreiber, S. L. (1996) Controlling protein association and subcellular localization with a synthetic ligand that induces heterodimerization of proteins. Proc. Natl. Acad. Sci. USA 93, 4604–4607.

    Article  CAS  PubMed  Google Scholar 

  10. Spencer, D. M. (1996) Creating conditional mutations in mammals. Trends Genet. 12, 181–187.

    Article  CAS  PubMed  Google Scholar 

  11. Ho, S. N., Biggar, S., Spencer, D.M., Schreiber, S. L., and Crabtree, G. R. (1996) Dimeric ligands define a role for transcriptional activation domains in reinitiation. Nature 382, 822–826.

    Article  CAS  PubMed  Google Scholar 

  12. Spencer, D. M., Belshaw, P. J., Chen, L., et al. (1996) Functional analysis of Fas signaling in vivo using synthetic inducers of dimerization. Curr. Biol. 6, 839–847.

    Article  CAS  PubMed  Google Scholar 

  13. Blau, C. A., Peterson, K. R., Drachman, J. G., and Spencer, D. M. (1997) A proliferation switch for genetically modified cells. Proc. Natl. Acad. Sci. USA 94, 3076–3081.

    Article  CAS  PubMed  Google Scholar 

  14. Jin, L., Siritanaratkul, N., Emery, D. W., et al. (1998) Targeted expansion of genetically modified bone marrow cells. Proc. Natl. Acad. Sci. USA 95, 8093–8097.

    Article  CAS  PubMed  Google Scholar 

  15. Stamatoyannopoulos, G. (2001) The Molecular Basis of Blood Diseases, 3rd ed. W. B. Saunders, Philadelphia, PA.

    Google Scholar 

  16. Gaensler, K. M., Kitamura, M., and Kan, Y. W. (1993) Germ-line transmission and developmental regulation of a 150-kb yeast artificial chromosome containing the human beta-globin locus in transgenic mice. Proc. Natl. Acad. Sci. USA 90, 11,381–11,385.

    Article  CAS  PubMed  Google Scholar 

  17. Peterson, K. R., Clegg, C. H., Huxley, C., et al. (1993) Transgenic mice containing a 248-Kb yeast artificial chromosome carrying the human β-globin locus display proper developmental control of human globin genes. Proc. Natl. Acad. Sci. USA 90, 7593–7597.

    Article  CAS  PubMed  Google Scholar 

  18. Blau, C. A., Barbas, C. F., 3rd, Bomhoff, A. L., et al. (2005) γ-Globin gene expression in chemical inducer of dimerization (CID)-dependent multipotential cells established from human β-globin locus yeast artificial chromosome (β-YAC) transgenic mice. J. Biol. Chem. 280, 36,642–36,647.

    Article  CAS  PubMed  Google Scholar 

  19. Harju, S., Navas, P. A., Stamatoyannopoulos, G., and Peterson, K. R. (2005) Genome architecture of the human β-globin locus affects developmental regulation of gene expression. Mol. Cell. Biol. 25, 8765–8778.

    Article  CAS  PubMed  Google Scholar 

  20. Peterson, K. R., Li, Q., Clegg, C. H., et al. (1995) Use of yeast artificial chromosomes (YACs) in studies of mammalian development: production of β-globin locus YAC mice carrying human globin developmental mutants. Proc. Natl. Acad. Sci. USA 92, 5655–5659.

    Article  CAS  PubMed  Google Scholar 

  21. Peterson, K. R., Navas, P. A., Li, Q., and Stamatoyannopoulos, G. (1998) LCR-dependent gene expression in β-globin YAC transgenics: detailed structural studies validate functional analysis even in the presence of fragmented YACs. Human Mol. Genet. 7, 2079–2088.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc., Totowa NJ

About this protocol

Cite this protocol

Blau, C.A., Peterson, K.R. (2006). Establishment of Cell Lines That Exhibit Correct Ontogenic Stage-Specific Gene Expression Profiles From Tissues of Yeast Artificial Chromosome Transgenic Mice Using Chemically Induced Growth Signals. In: MacKenzie, A. (eds) YAC Protocols. Methods in Molecular Biology™, vol 349. Humana Press. https://doi.org/10.1385/1-59745-158-4:163

Download citation

  • DOI: https://doi.org/10.1385/1-59745-158-4:163

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-612-2

  • Online ISBN: 978-1-59745-158-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics