Dictyostelium discoideum Protocols pp 125-135

Part of the Methods in Molecular Biology™ book series (MIMB, volume 346)

Parasexual Genetics Using Axenic Cells

  • Jason King
  • Robert Insall

Abstract

Normally, vegetative Dictyostelium grow as haploid cells. Occasionally, two haploid cells fuse together during normal growth, forming a diploid cell containing both parental sets of chromosomes within a single nucleus. The diploid state is reasonably stable, and the growth, development, and general behavior of diploids are similar to their haploid parents. However, during normal growth of diploids, cells may spontaneously lose one copy of each chromosome at random and revert back to a haploid state containing a selection of chromosomes from both parents. This diploid cycle therefore allows nonsexual recombination between two different mutant strains.

Diploid cells have multiple practical uses. They allow the generation of double and multiple knockouts, and are particularly useful for strains that are sick or difficult to generate using molecular genetics. They provide a means of manipulating genes that are lethal when disrupted in haploids. In diploids, it is possible to isolate heterozygous knockouts with no phenotype and then introduce a further mutant allele. These cells can then be segregated to yield haploid progeny with an effective gene replacement. Similarly, diploids made from different parent strains offer a means of examining the effects of different genetic backgrounds and overriding strain-specific phenotypes. A number of other uses are possible, making parasexual genetics potentially even more versatile.

Key Words

Parasexual cycle diploid genetic recombination linkage mapping 

References

  1. 1.
    Loomis, W. F. (1987) Genetic tools for Dictyostelium discoideum. Methods Cell Biol. 28, 31–65.PubMedCrossRefGoogle Scholar
  2. 2.
    Sussman, R. R. and Sussman, M. (1963) Ploidal inheritance in the slime mould Dictyostelium discoideum: haploidization and genetic segregation of diploid strains. J. Gen. Microbiol. 30, 349–355.PubMedGoogle Scholar
  3. 3.
    Katz, E. R. and Sussman, M. (1972) Parasexual recombination in Dictyostelium discoideum: selection of stable diploid heterozygotes and stable haploid segregants (clones-temperature sensitive-ploidy-fruiting bodies-spore-slime mold). Proc. Natl. Acad. Sci. USA 69, 495–498.PubMedCrossRefGoogle Scholar
  4. 4.
    Faure, M., Camonis, J. H., and Jacquet, M. (1989) Molecular characterization of a Dictyostelium discoideum gene encoding a multifunctional enzyme of the pyrimidine pathway. Eur. J. Biochem. 179, 345–358.PubMedCrossRefGoogle Scholar
  5. 5.
    Hadwiger, J. A. and Firtel, R. A. (1992) Analysis of G alpha 4, a G-protein subunit required for multicellular development in Dictyostelium. Genes Dev. 6, 38–49.PubMedCrossRefGoogle Scholar
  6. 6.
    Franke, J., and Kessin, R. (1977) A defined minimal medium for axenic strains of Dictyostelium discoideum. Proc. Natl. Acad. Sci. USA 74, 2157–2161.PubMedCrossRefGoogle Scholar
  7. 7.
    King, J. and Insall, R. H. (2003) Parasexual genetics of Dictyostelium gene disruptions: identification of a ras pathway using diploids. BMC Genet. 4, 12.PubMedCrossRefGoogle Scholar
  8. 8.
    Egelhoff, T. T., Brown, S. S., Manstein, D. J., and Spudich, J. A. (1989) Hygromycin resistance as a selectable marker in Dictyostelium discoideum. Mol. Cell Biol. 9, 1965–1968.PubMedGoogle Scholar
  9. 9.
    Katz, E. R. and Sussman, M. (1972) Parasexual recombination in Dictyostelium discoideum: selection of stable diploid heterozygotes and stable haploid segregants. Proc. Natl. Acad. Sci. USA 69, 495–498.PubMedCrossRefGoogle Scholar
  10. 10.
    Kalpaxis, D., Zundorf, I., Werner, H., et al. (1991) Positive selection for Dictyostelium discoideum mutants lacking UMP synthase activity based on resistance to 5-fluoroorotic acid. Mol. Gen. Genet. 225, 492–500.PubMedCrossRefGoogle Scholar
  11. 11.
    Loomis, W. F., Jr. (1971) Sensitivity of Dictyostelium discoideum to nucleic acid analogues. Exp. Cell. Res. 64, 484–486.PubMedCrossRefGoogle Scholar
  12. 12.
    Williams, K. L. and Barrand, P. (1978) Parasexual genetics in the cellular slime mould Dictyostelium discoideum: haploidisation of diploid strains using ben late. FEMS Microbiol. Lett. 4, 155–159.CrossRefGoogle Scholar
  13. 13.
    Welker, D. L. and Williams, K. L. (1980) Mitotic arrest and chromosome doubling using thiabendazole, cambendazole, nocodazole, and ben late in the slime mould Dictyostelium discoideum. J. Gen. Microbiol. 116, 397–407.Google Scholar
  14. 14.
    Welker, D. L. and Williams, K. L. (1987) Recessive lethal mutations and the maintenance of duplication-bearing strains of Dictyostelium discoideum. Genetics 115, 101–106.PubMedGoogle Scholar
  15. 15.
    Brody, T. and Williams, K. L. (1974) Cytological analysis of the parasexual cycle in Dictyostelium discoideum. J. Gen. Microbiol. 82, 371–383.Google Scholar
  16. 16.
    Zada, H. (1977) Analysis of karyotype and ploidy of Dictyostelium discoideum using colchicine induced metaphase arrest. J. Gen. Microbiol. 99, 201–208.Google Scholar
  17. 17.
    Sucgang, R., Chen, G., Liu, W., et al. (2003) Sequence and structure of the extrachromosomal palindrome encoding the ribosomal RNA genes in Dictyostelium. Nucleic Acids Res. 31, 2361–2368.PubMedCrossRefGoogle Scholar
  18. 18.
    Weijer, C. J., Duschl, G., and David, C. N. (1984) A revision of the Dictyostelium discoideum cell cycle. J. Cell Sci. 70, 111–131.PubMedGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2006

Authors and Affiliations

  • Jason King
    • 1
  • Robert Insall
    • 2
  1. 1.Cardiff UniversityCardiffUK
  2. 2.School of BiosciencesThe University of Birmingham, EdgbastonBirminghamUK

Personalised recommendations