Skip to main content

Quencher Extension for Single Nucleotide Polymorphism Quantification in Bacterial Typing and Microbial Community Analyses

  • Protocol
Diagnostic Bacteriology Protocols

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 345))

  • 1300 Accesses

Abstract

Quencher extension is a novel single-step closed tube real-time method to quantify single nucleotide polymorphisms (SNPs) in combination with primer extension. A probe with a 5′-reporter is single-base extended with a dideoxy nucleotide containing a quencher if the target SNP allele is present. The reaction is measured from the quenching (reduced fluorescence) of the reporter. The relative amount of a specific SNP allele is determined from the nucleotide incorporation rate in a thermocycling reaction. The quencher extension protocol presented was developed for SNP allele quantification in Listeria monocytogenes and for microbial community analyses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rudi, K., Nogva, H., Moen, B., et al. (2002) Development and application of new nucleic acid-based technologies for microbial community analyses in foods. Int. J. Food Microbiol. 78, 149–158.

    Article  Google Scholar 

  2. Vignal, A., Milan, D., SanCristobal, M., and Eggen, A. (2002) A review on SNP and other types of molecular markers and their use in animal genetics. Genet. Sel. Evol. 34, 275–305.

    Article  CAS  PubMed  Google Scholar 

  3. Rudi, K. and Holck, A. L. (2003) Real-time closed tube single nucleotide polymorphism (SNP) quantification in pooled samples by quencher extension (QEXT). Nucl. Acids. Res. 31, e117.

    Article  PubMed  Google Scholar 

  4. Rudi, K. (in press) Application of nucleic acid probes for analyses of microbial communities, in: Rapid Analytical Microbiology (Olson, W., ed.), Davis Horwood International Publishing, Ltd. (http://www.euromed.uk.com).

  5. Pearson, L. J. and Marth, E. H. (1990) Listeria monocytogenes—threat to a safe food supply: a review. J. Dairy Sci. 73, 912–928.

    Article  CAS  PubMed  Google Scholar 

  6. Enright, M. C. and Spratt, B. G. (1999) Multilocus sequence typing Trends Microbiol. 7, 482–487.

    Article  CAS  PubMed  Google Scholar 

  7. Rudi, K., Katla, T., and Naterstad, K. (2003) Multi locus fingerprinting of Listeria monocytogenes by sequence-specific labeling of DNA probes combined with array hybridization. FEMS. Microbiol. Lett. 220, 9–14.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc.

About this protocol

Cite this protocol

Rudi, K., Zimonja, M., Skånseng, B. (2006). Quencher Extension for Single Nucleotide Polymorphism Quantification in Bacterial Typing and Microbial Community Analyses. In: O’Connor, L. (eds) Diagnostic Bacteriology Protocols. Methods in Molecular Biology™, vol 345. Humana Press. https://doi.org/10.1385/1-59745-143-6:111

Download citation

  • DOI: https://doi.org/10.1385/1-59745-143-6:111

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-594-1

  • Online ISBN: 978-1-59745-143-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics