Skip to main content

Switchgrass (Panicum virgatum L.)

  • Protocol
Agrobacterium Protocols Volume 2

Part of the book series: Methods in Molecular Biology ((MIMB,volume 344))

Abstract

During the last decade, Agrobacterium-mediated transformation of more than a dozen monocotyledonous plants, including forage and turf grasses, has been achieved. So far, switchgrass is the only warm season grass that has been transformed with A. tumefaciens. We have developed a highly efficient system for transformation of different switchgrass explants utilizing the A. tumefaciens strain AGL1 carrying the binary vector pDM805, containing the phosphinotricin acetyltransferase (bar) and β-glucoronidase (GUS) (uidA or gus) genes. Transformed cultures were selected in the presence of 10 mg/L bialaphos and the resultant plantlets were treated with the herbicide Basta®. The T-DNA delivery frequency was affected by the genotype, explant used, and the presence or absence of acetosyringone during inoculation and cocultivation. The total time required from inoculation to the establishment of plants in soil was 3–4 mo. Stable integration, expression, and inheritance of both transgenes were confirmed by molecular and genetic analyses. Approximately 90% of the tested plants appeared to have only one or two copies of the T-DNA inserts. The transgenes were sexually transmitted through both male and female gametes to the progeny obtained from controlled crosses in the expected segregation ratio of 1∶1 according to a χ2 test at p = 0.05.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wang, Z., Hopkins, A., and Mian, R. (2001) Forage and turf grass biotechnology. Crit. Rev. Plant Sci. 20, 573–619.

    Article  CAS  Google Scholar 

  2. Moser, L.E. and Vogel, K.P. (1995) Switchgrass, big bluestem, and indiangrass. In: Forages Vol. I: An Introduction to Grassland Agriculture (Barnes, R.F., Miller, D.A., and Nelson, C.J. eds.), Iowa State Univ. Press, Ames, IA, pp. 409–420.

    Google Scholar 

  3. Sanderson, M.A., Reed, R.L., McLaughlin, S.B., et al. (1996) Switchgrass as a sustainable bioenergy source. Bio-Resource Technology 56, 83–93.

    CAS  Google Scholar 

  4. McLaughlin, S.B., Bouton, J., Bransby, D., et al. (1999) Developing switchgrass as a bioenergy crop. In: Perspectives on New Crops and New Uses (Janick, J. J., ed.), Am. Soc. Hort. Sci. Press, Alexandria, VA, pp. 282–299.

    Google Scholar 

  5. Denchev, P.D. and Conger, B.V. (1994) Plant regeneration from callus cultures of switchgrass. Crop Sci. 34, 1623–1627.

    Article  Google Scholar 

  6. Denchev, P.D. and Conger, B.V. (1995) In vitro culture of switchgrass: influence of 2,4-D and picloram in combination with benzyladenine on callus initiation and regeneration. Plant Cell Tissue Organ Cult. 40, 43–48.

    Article  CAS  Google Scholar 

  7. Alexandrova, K.S., Denchev, P.D., and Conger, B.V. (1996a) In vitro development of inflorescences from switchgrass nodal segments. Crop Sci. 36, 175–178.

    Article  Google Scholar 

  8. Alexandrova, K.S., Denchev, P.D., and Conger, B.V. (1996b) Micropropagation of witchgrass by node culture. Crop Sci. 36, 1709–1711.

    Article  PubMed  CAS  Google Scholar 

  9. Dutta Gupta, S. and Conger, B.V. (1999) Somatic embryogenesis and plant regeneration from suspension cultures of switchgrass. Crop Sci. 39, 243–247.

    Google Scholar 

  10. Dutta Gupta, S. and Conger, B. V. (1998) In vitro differentiation of multiple shoot clumps from intact seedlings of switchgrass. In Vitro Cell. Dev. Biol.-Plant 34, 196–202.

    Google Scholar 

  11. Somleva, M.N., Tomaszewski, Z., and Conger, B.V. (2002) Agrobacterium-mediated genetic transformation of switchgrass. Crop Sci. 42, 2080–2087.

    Article  CAS  Google Scholar 

  12. Lazo, G.R., Stein, P.A., and Ludwig, R.A. (1991) A DNA transformation-competent Arabidopsis genomic library in Agrobacterium. Nat. Biotechnol. 9, 963–967.

    Article  CAS  Google Scholar 

  13. Tingay, S., McElroy, D., Kalla, R., et al. (1997) Agrobacterium tumefaciens-mediated barley transformation. Plant J. 11, 1369–1376.

    Article  CAS  Google Scholar 

  14. Cheng, M., Lowe, B.A., Spenser, T.M., Ye, X., and Armstrong, C. L. (2004) Factors influencing Agrobacterium-mediated transformation of monocotyledonous species. In Vitro Cell. Dev. Biol.-Plant 40, 31–45.

    Article  Google Scholar 

  15. Murashige, T. and Skoog, F. (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 15, 473–497.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Somleva, M.N. (2006). Switchgrass (Panicum virgatum L.). In: Wang, K. (eds) Agrobacterium Protocols Volume 2. Methods in Molecular Biology, vol 344. Humana Press. https://doi.org/10.1385/1-59745-131-2:65

Download citation

  • DOI: https://doi.org/10.1385/1-59745-131-2:65

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-843-0

  • Online ISBN: 978-1-59745-131-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics