Skip to main content

Green Alga (Chlamydomonas reinhardtii)

  • Protocol
Agrobacterium Protocols Volume 2

Part of the book series: Methods in Molecular Biology ((MIMB,volume 344))

Abstract

This protocol describes the Agrobacterium tumefaciens-mediated nuclear transformation of a microalgae Chlamydomonas reinhardtii, using a gene construct carrying the genes coding for β-glucuronidase (gus), green fluorescent protein (gfp), and hygromycin phosphotransferase (hpt). The transformation frequency with this protocol as revealed by hygromycin resistance was many fold higher (about 50-fold) than that of the commonly used glass bead method of transformation. The simplicity of Agrobacterium-mediated gene transfer and the high transformation frequency as well as the precision of T-DNA integration will enable further molecular dissection of this important model organism as well as other algal systems to understand basic plant metabolic processes as well as to exploit the systems for biotechnological applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Leán-Bañares, R., González-Ballester, D., Galvan, A. and Fernández, E. (2004) Transgenic microalgae as green cell-factories. Trends Biotech. 22, 45–52.

    Article  Google Scholar 

  2. Harris, E.H. (1989) The Chlamydomonas Source Book: A Comprehensive Guide to Biology and Laboratory Use. Academic Press, New York.

    Google Scholar 

  3. Harris, E.H. (2001) Chlamydomonas as a model organism. Ann. Rev. Plant Physiol. Plant Mol. Biol. 52, 363–406.

    Article  CAS  Google Scholar 

  4. Den, R.M., Han, M., and Niyogi, K.K. (2001) Functional genomics of plant photosynthesis in the fast lane using Chlamydomonas reinhardtii. Trends Plant Sci. 6, 364–371.

    Article  Google Scholar 

  5. Kumar, S.V., Misquitta, R.W., Reddy, V.S., Rao, B.J., and Rajam, M.V. (2004) Genetic transformation of the green alga—Chlamydomonas reinhardtii by Agrobacterium tumefaciens. Plant Sci. 166, 731–738.

    Article  CAS  Google Scholar 

  6. Apt, K.E. Kroth-Pancic, P.G., and Grossman, A.R. (1996) Stable nuclear transformation of the diatom Phaeodactylum tricornutum. Mol. Gen. Genet. 252, 572–579.

    PubMed  CAS  Google Scholar 

  7. Dunahay, T.G., Jarvis, E.E., and Roessler, P.G. (1995) Genetic transformation of the diatoms Cyclotella cryptica and Navicula saprophila. J. Phycol. 31, 1004–1012.

    Article  CAS  Google Scholar 

  8. Falciatore, A., Casotti, R., Leblanc, C., Abrescia, C., and Bowler, C. (1999) Transformation of nonselectable reporter genes in marine diatoms. Mar. Biotechnol. 1, 239–251.

    Article  PubMed  CAS  Google Scholar 

  9. Shimogawara, K., Fujiwara, S., Grossman, A., and Usuda, H. (1998) High efficiency transformation of Chlamydomonas reinhardtii by electroporation. Genetics 148, 1821–1828.

    PubMed  CAS  Google Scholar 

  10. Kindle, K.L., Schnell, R.A., Fernandez, E., and Lefebvre, P.A. (1989) Stable nuclear transformation of Chlamydomonas using the Chlamydomonas gene for nitrate reductase. J. Cell Biol. 109, 2589–2601.

    Article  PubMed  CAS  Google Scholar 

  11. Kindle, K.L. (1990) High frequency nuclear transformation of Chlamydomonas reinhardtii. Proc. Natl. Acad. Sci. USA 93, 13689–13693.

    Google Scholar 

  12. Dunahay, T.G. (1993) Transformation of Chlamydomonas reinhardtii with silicon carbide whiskers. BioTechniques 15, 452–460.

    PubMed  CAS  Google Scholar 

  13. Lohuis, M.R. and Miller, D.J. (1998) Genetic transformation of dinoflagellates (Amphidinium and Symbiodinium): expression of GUS in microalgae using heterologous promoter constructs. Plant J. 13, 427–435.

    Article  Google Scholar 

  14. Hei, Y., Komari, T. and Kumashiro, T. (1994) Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundariues of T-DNA. Plant J. 6, 271–282.

    Article  Google Scholar 

  15. Bradford, M.M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Ann. Biochem. 72, 248–254.

    Article  CAS  Google Scholar 

  16. Sambrook, J., Fritsch, E.F., and Maniatis, T. (eds.) (1989) Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Press, Cold Spring Harbor, New York.

    Google Scholar 

  17. Jefferson, R.A. (1987) Assaying chimeric genes in plants: the uidA gene fusion system. Plant. Mol. Biol. Rep. 5, 387–405.

    Article  CAS  Google Scholar 

  18. Doyle, J.J. and Doyle, J.L. (1990) Isolation of plant DNA from fresh tissue. Focus 12, 13–15.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Rajam, M.V., Kumar, S.V. (2006). Green Alga (Chlamydomonas reinhardtii). In: Wang, K. (eds) Agrobacterium Protocols Volume 2. Methods in Molecular Biology, vol 344. Humana Press. https://doi.org/10.1385/1-59745-131-2:421

Download citation

  • DOI: https://doi.org/10.1385/1-59745-131-2:421

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-843-0

  • Online ISBN: 978-1-59745-131-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics