Cassava (Manihot esculenta Crantz)

  • Weston Msikita
  • Uzoma Ihemere
  • Dimuth Siritunga
  • Richard T. Sayre
Part of the Methods in Molecular Biology book series (MIMB, volume 344)

Abstract

During the last three years the generation of stably transformed cassava plants having value-added traits has become a reality. Currently, two Agrobacterium-mediated transformation systems are routinely used to engineer cassava. These systems use either somatic embryos or friable embryogenic calli. This paper presents detailed protocols for the transformation of cassava using primary somatic embryos. The effects of explant types, tissue culture conditions, and bacterial and plasmid related factors on transformation efficiency are discussed.

Key Words

Agrobacterium tumefaciens apical leaves auxiliary buds cassava direct embryogenesis explant friable embryogenic callus genetic transformation germinating somatic embryos Manihot esculenta Crantz shoot regeneration somaclonal variation 

References

  1. 1.
    Nassar, N.M.A., Santos, E., and David, S. (2000) The transference of apomixis genes from Manihot neusana Nassar to cassava, M. esculenta Crantz. Hereditas 132, 167–170.CrossRefGoogle Scholar
  2. 2.
    Nassar, N.M.A. (1995) Development and selection for apomixis in cassava Manihot esculenta Crantz. Can. J. Plant Sci. 74, 857–858.Google Scholar
  3. 3.
    Hahn, S.K., Bai, K.V., and Asiedu, R. (1990) Tetraploids, triploids and 2n pollen from diploid interspecific crosses with cassava. Theor. Appl. Genet. 79, 433–439.CrossRefGoogle Scholar
  4. 4.
    Nassar, N.M.A. (2003) Gene flow between cassava, Manihot esculenta Crantz, and wild relatives. Genet. Mol. Res. 2, 334–347.PubMedGoogle Scholar
  5. 5.
    Munyikwa, T.R.I., Raemakers, C.C.J.M., Schreuder, M., et al. (1998) Pinpointing towards improved transformation and regeneration of cassava (Manihot esculenta Crantz). Plant Sci. 135, 87–101.CrossRefGoogle Scholar
  6. 6.
    Puonti-Kaerlas, J. (1998) Cassava biotechnology. Biotechnol. Genet. Revs. 15, 329–364.Google Scholar
  7. 7.
    Taylor, N., Chavarraiga, P., Raemakers, C.C.J.M., Siritunga, D., and Zhang, P. (2004) Development and application of transgenic technologies in cassava. Plant Mol. Biol. 56, 671–688.PubMedCrossRefGoogle Scholar
  8. 8.
    Zhang, P., Legris, G., Coulin, P., and Puonti-Kaerlas, J. (2000) Production of stably transformed cassava plants via particle bombardment. Plant Cell Rep. 19, 939–945.CrossRefGoogle Scholar
  9. 9.
    Siritunga, D. and Sayre, R. (2003) Generation of cyanogen-free transgenic cassava. Planta 217, 367–373.PubMedCrossRefGoogle Scholar
  10. 10.
    Siritunga, D., Arias-Garzon, D., White, W., and Sayre, R. (2004) Over-expression of hydroxynitrile lyase in transgenic cassava (Manihot esculenta, Crantz) roots accelerates cyanogenesis. Plant Biotech. J. 2, 37–43.CrossRefGoogle Scholar
  11. 11.
    Siritunga, D. and Sayre, R. (2004) Engineering cyanogens in cassava. Plant Mol. Biol. 56, 661–669.PubMedCrossRefGoogle Scholar
  12. 12.
    Franche, C., Bogusz, D., Schöpke, C., Fauquet, C., and Beachy, R.N. (1991) Transient gene expression in cassava using high-velocity microprojectiles. Plant Mol. Biol. 17, 493–498.PubMedCrossRefGoogle Scholar
  13. 13.
    Zhang, P., Phansiri, S., and Puonti-Kaerlas, J. (2001) Improvement of cassava shoot organogenesis by use of silver nitrate in vitro. Plant Cell Tiss. Org. Cult. 67, 47–54.CrossRefGoogle Scholar
  14. 14.
    Zhang, P. and Puonti-Kaerlas, J. (2000) PIG-mediated cassava transformation using positive and negative selection. Plant Cell Rep. 19, 1041–1048.CrossRefGoogle Scholar
  15. 15.
    Puonti-Kaerlas, J., Li, H.Q., Sautter, C., and Potrykus, I. (1997) Production of transgenic cassava (Manihot esculenta Crantz) via organogenesis and Agrobacterium-mediated transformation. African J. Root Tuber Crops 2, 181–186.Google Scholar
  16. 16.
    Chavarriaga-Aguirre, P., Schöpke, C., Sangare, A., Fauquet, C.M., and Beachy, R.N. (1993) Transformation of cassava (Manihot esculenta Crantz) embryogenic tissues using Agrobacterium tumefaciens. In: Proceedings of the 1st International Scientific Meeting of the Cassava Biotechnology Network. Cartagena, Colombia, Roca, W.M., Roca and Thro, A.M. eds., CIAT Working Document 123, 222–228.Google Scholar
  17. 17.
    Msikita, W., Sayre, R.T., White, V.L., and Marks, J. (2002) Influence of explant source, and light on efficiency of Agrobacterium-mediated transformation of cassava. Fifth International Meeting of the Cassava Biotechnology Network. St. Louis, MO., USA. November 4–9.Google Scholar
  18. 18.
    Konan N.K., Schöpke, C., Carcamo, R., Beachy, R.N., and Fauquet, C. (1997) An efficient mass propagation system for cassava (Manihot esculenta Crantz) based on nodal explants and auxiliary bud-derived meristems. Plant Cell Rep. 16, 444–449.Google Scholar
  19. 19.
    Puonti-Kaerlas, J., Frey, P., and Potrykus, I. (1997) Development of a meristem gene transfer technique for cassava. African J. Root & Tuber Crops 2, 175–180.Google Scholar
  20. 20.
    Woodward, B. and Puonti-Kaerlas. J. (2001) Somatic embryogenesis from floral tissue of cassava (Manihot esculenta Crantz). Euphytica 120, 1–6.CrossRefGoogle Scholar
  21. 21.
    Gresshoff, P. and Doy, C. (1974) Derivation of a haploid cell line from Vitis vinifera and the importance of the stage of meiotic development of anthers for haploid culture of this and other genera. Z. Pflanzenphysiol. 73, 132–141.Google Scholar
  22. 22.
    Raemakers, K., Schreuder, M., Pereira I., Munyikwa, T., Jacobsen, E., and Visser, R. (2001) Progress made in FEC transformation of cassava. Euphytica 120, 15–24.CrossRefGoogle Scholar
  23. 23.
    Taylor, N., Masona, M.V., Carcamo, R., Ho, T., Schöpke, C., and Fauquet, C.M (2001) Production of embryogenic tissues and regeneration of transgenic plants in cassava (Manihot esculenta Crantz). Euphytica 120, 25–34.CrossRefGoogle Scholar
  24. 24.
    Murashige, T. and Skoog, F. (1962) A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol Plant. 15, 473–497.CrossRefGoogle Scholar
  25. 25.
    Gonzalez, A.E., Schöpke, C., Taylor, N.J., Beachy, R.N., and Fauquet, C.M. (1998). Regeneration of transgenic cassava plants (Manihot esculenta Crantz) through Agrobacterium-mediated transformation of embryogenic suspension cultures. Plant Cell Reports 17, 827–831.CrossRefGoogle Scholar
  26. 26.
    Reed J., Privalle L., Luann Powell M., et al. (2001) Phosphomannose isomerase: an efficient selectable marker for plant transformation. In Vitro Cell. Dev. Biol. Plant 37, 127–136.Google Scholar
  27. 27.
    Zambre, M., Terryn, N., De Clercq, J., et al. (2003) Light strongly promotes gene transfer from Agrobacterium tumefaciens to plant cells. Planta 216, 580–586.PubMedGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2006

Authors and Affiliations

  • Weston Msikita
    • 1
  • Uzoma Ihemere
    • 2
  • Dimuth Siritunga
    • 3
  • Richard T. Sayre
    • 2
  1. 1.Department of Molecular Genetics and Cell BiologyUniversity of ChicagoChicago
  2. 2.Department of Plant Cellular and Molecular BiologyThe Ohio State UniversityColumbus
  3. 3.Department of BiologyUniversity of Puerto RicoMayaguezPuerto Rico

Personalised recommendations