Rose (Rosa hybrida L.)

  • Schuyler S. Korban
  • Ksenija Gasic
  • Xiangqian Li
Part of the Methods in Molecular Biology book series (MIMB, volume 344)

Abstract

Although rose transformation is successful, it remains difficult to transform myriad rose species as well as different rose genotypes. In this protocol, a detailed description of rose transformation is presented. This protocol relied on Agrobacterium-mediated transfer of embryogenic callus cultures. There are many critical steps that must be followed to achieve successful transformation; however, it is important to keep in mind that these apply to a selected number of genotypes, and as a different genotype is subjected to transformation, modifications of this protocol must be made to achieve successful transformation.

Key Words

Agrobacterium tumefaciens Rosa hybrida genetic transformation 

References

  1. 1.
    Mastalerz, J.W. and Langhans, R.W. (1969) Rose, a manual on the culture, management, disease, insects, economics and breeding of greenhouse roses. New York State Flower Growers Association, New York, NY.Google Scholar
  2. 2.
    Rajapakse, S., Hubbard, M., Kelly, J.W., Abbott, A.G., and Ballard, R.E. (1992) Identification of rose cultivars by restriction fragment length polymorphism. Scientia Hort. 52, 237–245.CrossRefGoogle Scholar
  3. 3.
    Vainstein, A. and Ben-Meir, H. (1994) DNA fingerprint analysis of roses. J. Amer. Soc. Hort. Sci. 119, 1099–1103.Google Scholar
  4. 4.
    De Wit, J.C., Esendam, H.F., Honkanen, J.J., and Tuominen, U. (1990) Somatic embryogenesis and regeneration of flowering plants in rose. Plant Cell Rep. 9, 456–458.CrossRefGoogle Scholar
  5. 5.
    Arene, L., Pellegrino, C., and Gudin, S. (1993) A comparison of the somaclonal variation level of Rosa hybrida L. cv. Meirutral plants regenerated from callus of direct induction from different vegetative and embryonic tissues. Euphytica 71, 83–90.CrossRefGoogle Scholar
  6. 6.
    van der Salm, T.P.M., van der torn, C.J.G., Hanischten Cate, C.H., and Dons, H.J.M. (1996) Somatic embryogenesis and shoot regeneration from excised adventitious roots of the rootstock Rosa hybrida cv. Money Way. Plant Cell Rep. 15, 522–526.Google Scholar
  7. 7.
    Hsia, C. and Korban, S.S. (1996) Organogenesis and somatic embryogenesis in callus cultures of Rosa hybrida and Rosa chinensis minima. Plant Cell Tiss. Org. Cult. 44, 1–6.CrossRefGoogle Scholar
  8. 8.
    Kintzois, S., Manos, C., and Makri, O. (1999) Somatic embryogenesis from mature leaves of rose (Rosa sp.). Plant Cell Rep. 18, 467–472.CrossRefGoogle Scholar
  9. 9.
    Li, X., Krasnyanski, S., and Korban, S.S. (2002) Somatic embryogenesis, secondary somatic embryogenesis, and shoot organogenesis in Rosa. J. Plant Physiol. 159, 313–319.CrossRefGoogle Scholar
  10. 10.
    Kunitake, H., Imamizo, H., and Mii, M. (1993) Somatic embryogenesis and plant regeneration from immature seed-derived calli of rugosa rose (Rosa rugosa Thumb). Plant Sci. 90, 187–194.CrossRefGoogle Scholar
  11. 11.
    Visessuwan, R., Kawai, T., and Mii, M. (1997) Plant regeneration systems from leaf segment culture through embryogenic callus formation of Rosa hybrida and R. canina. Breed. Sci. 47, 217–222.Google Scholar
  12. 12.
    Firoozabady, E., Moy, Y., Courtney-Gutterson, N., and Robinson, K. (1994) Regeneration of transgenic rose (Rosa hybrida) plants from embryogenic tissue. Nat. Biotechnol. 12, 609–613.CrossRefGoogle Scholar
  13. 13.
    van der Salm, T.P.M., Bouwer, R., van Dijk, A.J., et al. (1997) Production of rol gene transformed plants of Rosa hybrida L. and characterization of their rooting ability. Mol. Breeding 3, 39–47.CrossRefGoogle Scholar
  14. 14.
    van der Salm, T.P.M., Bouwer, R., van Dijk, A.J., et al. (1998) Stimulation of scion bud release by rol gene transformed rootstocks of Rosa hybrida L. J. Exp. Bot. 49, 847–852.CrossRefGoogle Scholar
  15. 15.
    Marchant, R., Power, J.B., Lucas, J.A., and Davey, M.R. (1998) Biolistic transformation of rose (Rosa hybrida L.). Ann. Bot. 81, 109–114.CrossRefGoogle Scholar
  16. 16.
    Marchant, R., Davey, M.R., Lucas, J.A., Lamb, C.J., Dixon, R.A., and Power, J.B. (1998) Expression of a chitinase in rose (Rosa hybrida L) reduces development of black spot disease (Diplocarpon rosae Wolf). Mol. Breed. 4, 187–194.CrossRefGoogle Scholar
  17. 17.
    Li, X., Krasnyanski, S., and Korban S.S. (2002) Optimization of the uidA gene transfer into somatic embryos of rose via Agrobacterium tumefaciens. Plant Physiol. Biochem. 40, 453–459.CrossRefGoogle Scholar
  18. 18.
    Li, X., Gasic, K., Cammue, B., Broekaert, W., and Korban, S.S. (2003) Transgenic rose lines harboring an antimicrobial protein gene, Ace-AMP1, demonstrate enhanced resistance to powdery mildew (Sphaerotheca pannosa). Planta 218, 226–232.PubMedCrossRefGoogle Scholar
  19. 19.
    Kim, C.K., Chung, J.D., Park, S.H., Burrell, A.M., Kamo, K.K., and Byrne, D.H. (2004) Agrobacterium tumefaciens-mediated transformation of Rosa hybrida using the green fluorescent protein (GFP) gene. Plant Cell Tiss. Org. Cult. 78, 107–111.CrossRefGoogle Scholar
  20. 20.
    Hsia, C. and Korban, S.S. (1996) Factors affecting in vitro establishment and shoot proliferation of Rosa hybrida L and Rosa chinensis minima. In Vitro Cell Dev. Biol.-Plant 32, 217–222.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2006

Authors and Affiliations

  • Schuyler S. Korban
    • 1
  • Ksenija Gasic
    • 1
  • Xiangqian Li
    • 2
  1. 1.Department of Natural Resources & Environmental SciencesUniversity of IllinoisUrbana
  2. 2.Division of Biological SciencesUniversity of California-San DiegoLa Jolla

Personalised recommendations