Tomato (Lycopersicum esculentum)

Part of the Methods in Molecular Biology book series (MIMB, volume 343)


Tomato (Lycopersicum esculentum) is an important fruit crop in the Americas, southern Europe, the Middle East, and India, with increasing production in China, Japan, and Southeast Asia. It is amenable to producing pharmaceuticals, particularly for oral delivery; for many of the same reasons, it is a popular vegetable. Its fruit does not contain toxic substances and is palatable uncooked; it is easily processed; the plants are able to be propagated by seed or clonally by tip or shoot cuttings; the plants have a high yield of fruit; there is reasonable biomass and protein content; and they are easily grown under containment. This chapter describes Agrobacterium-mediated transformation of the tomato nucleus using cotyledons as explants. We have used this protocol to generate transgenic lines from several tomato cultivars expressing various genes of interest and selectable markers. We also provide protocols for molecular characterization of transgenic lines and batch processing tomato fruit.

Key Words

Tomato nuclear transformation Agrobacterium-mediated transformation fruit processing molecular characterization of transformed lines plant-made vaccines 


  1. 1.
    Hsieh, T. H., Lee, J. T., Yang, P. T., et al. (2002) Heterology expression of the Arabidopsis C-repeat/dehydration response element binding factor 1 gene confers elevated tolerance to chilling and oxidative stresses in transgenic tomato. Plant Physiol. 129, 1086–1094.PubMedCrossRefGoogle Scholar
  2. 2.
    Jia, G. X., Zhu, Z. Q., Chang, F. Q., and Li, Y. X. (2002) Transformation of tomato with the BADH gene from Atriplex improves salt tolerance. Plant Cell Rep. 21, 141–146.CrossRefGoogle Scholar
  3. 3.
    Mishra, S. K., Tripp, J., Winkelhaus, S., Tschiersch, B., Theres, K., Nover, L., and Scharf, K. D. (2002) In the complex family of heat stress transcription factors, HsfA1 has a unique role as master regulator of thermotolerance in tomato. Genes Dev. 16, 1555–1567.PubMedCrossRefGoogle Scholar
  4. 4.
    Gubba, A., Gonsalves, C., Stevens, M. R., Tricoli, D. M., and Gonsalves, D. (2002) Combining transgenic and natural resistance to obtain broad resistance to topovirus infection in tomato (Lycopersicon esculentum Mill). Mol. Breeding 9, 13–23.CrossRefGoogle Scholar
  5. 5.
    Li, L. and Steffens, J. C. (2002) Over expression of polyphenol oxidase in transgenic tomato plants results in enhanced bacterial disease resistance. Planta 215, 239–247.PubMedCrossRefGoogle Scholar
  6. 6.
    Lincoln, J. E., Richael, C., Overduin, B., Smith, K., Bostock, R., and Gilchrist, D. G. (2002) Expression of the antiapoptotic baculovirus p35 gene in tomato blocks programmed cell death and provides broad-spectrum resistance to disease. Proc. Natl. Acad. Sci. USA 99, 15217–15221.PubMedCrossRefGoogle Scholar
  7. 7.
    Carey, A. T., Smith, D. L., Harrison, E., et al. (2001) Down-regulation of a ripening-related beta-galactosidase gene (TBG1) in transgenic tomato fruits. J. Exp. Bot. 52, 663–668.PubMedGoogle Scholar
  8. 8.
    Mehta, R. A., Cassol, T., Li, N., Ali, N., Handa, A. K., and Mattoo, A. K. (2002) Engineered polyamine accumulation in tomato enhances phytonutrient content, juice quality, and vine life. Nat. Biotechnol. 20, 613–618.PubMedCrossRefGoogle Scholar
  9. 9.
    Sandhu, J. S., Krasnyanski, S. F., Domier, L. L., Korban, S. S., Osadjan, M. D., and Buetow, D. E. (2000) Oral immunization of mice with transgenic tomato fruit expressing respiratory syncytial virus-F protein induces a systemic immune response. Transgenic Res. 9, 127–135.PubMedCrossRefGoogle Scholar
  10. 10.
    Kim, C. H., Kim, K. I., Hong, S. H., Lee, Y. H., and Chung, I. S. (2001) Improved production of recombinant rotavirus VP6 in sodium butyrate-supplemented suspension cultures of transgenic tomato (Lycopersicon esculentum Mill.) cells. Biotechnol. Letts. 23, 1061–1066.CrossRefGoogle Scholar
  11. 11.
    Jani, D., Meena, L. S., Mohammad, Q., et al. (2002) Expression of cholera toxin B subunit in transgenic tomato plants. Transgenic Res. 11, 447–454.PubMedCrossRefGoogle Scholar
  12. 12.
    Ma, Y., Lin, S. Q., Gao, Y., et al. (2003) Expression of ORF2 partial gene of hepatitis E virus in tomatoes and immunoactivity of expression products. World J. Gastroenterol. 9, 2211–2215.PubMedGoogle Scholar
  13. 13.
    Walmsley, A. M., Kirk, D. D., and Mason, H. S. (2003) Passive immunization of mice pups through oral immunization of dams with a plant-derived vaccine. Immunol. Lett. 86, 71–76.PubMedCrossRefGoogle Scholar
  14. 14.
    Walmsley, A. M., Alvarez, M. L., Jin, Y., et al. (2003) Expression of the B subunit of Escherichia coli heat-labile enterotoxin as a fusion protein in transgenic tomato. Plant Cell Rep. 21, 1020–1026.PubMedCrossRefGoogle Scholar
  15. 15.
    Sambrook, J., Fritsch, E. F., and Maniatis, T. (1989) Molecular Cloning—A Laboratory Manual, Cold Spring Harbor Laboratory Press, Plainview, NY.Google Scholar
  16. 16.
    Crowther, J. R. (1995) ELISA. Theory and practice. Methods Mol. Biol. 42, 1–218.PubMedGoogle Scholar
  17. 17.
    Bruyns, A.-M., De Neve, M., De Jaeger, G., De Wilde, C., Rouzé, P., and Depicker, A. (1998), in Recombinant Proteins from Plants, vol. 3 (Cunningham, C. and Porter, A. J. R., eds.), Humana Press, Totowa, NJ, pp. 251–269.CrossRefGoogle Scholar
  18. 18.
    Ling, H.-Q., Kriseleit, D., and Ganal, M. W. (1998) Effect of ticarcillin/potassium clavulanate on callus growth and shoot regeneration in Agrobacterium-mediated transformation of tomato (Lycopersicon esculentum Mill.). Plant Cell Rep. 17, 843–847.CrossRefGoogle Scholar
  19. 19.
    Costa, M. G. C., Nogueira, F. T. S., Figueira, M. L., Otoni, W. C., Brommonschenket, S. H., and Cecon, P. R. (2000) Influence of the antibiotic timentin on plant regeneration of tomato (Lycopersicon esculentum Mill.) cultivars. Plant Cell Rep. 19, 327–332.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2006

Authors and Affiliations

There are no affiliations available

Personalised recommendations