Barley (Hordeum vulgare L.)

  • John Jacobsen
  • Ingrid Venables
  • Ming-Bo Wang
  • Peter Matthews
  • Michael Ayliffe
  • Frank Gubler
Part of the Methods in Molecular Biology book series (MIMB, volume 343)


Crop improvement is limited by the availability of valuable traits in sexually compatible species. Access to new characters using genetic engineering would be of great value. Barley has been transformed using microprojectile bombardment and by direct gene transfer to protoplasts, but neither method has been able to produce fertile transformants in large numbers with simple transgene integration characteristics. Agrobacterium-mediated transformation was first achieved in 1997, and it has become the method of choice. Using immature embryos of the barley variety Golden Promise as the target organ, the binary vector pWBVec8 containing the intron-interrupted hygromycin resistance gene hph as the selectable marker, and selection of transformed cells on hygromycin, the Agrobacterium method is efficient, and the transgene insertion characteristics are superior to other methods. However, the procedure is strongly genotype dependent. In this report, we describe a transformation protocol giving details of plant culture, embryo isolation and preparation, vector details, Agrobacterium culture, infection methods, subsequent procedures for callus generation and plantlet production, and analysis of transgenic plants.

Key Words

Barley transformation barley embryos Golden Promise Agrobacterium pWBVec8 


  1. 1.
    Wang, M. B., Abbott, D. C., and Waterhouse, P. M. (2000) A single copy of a virus-derived transgene encoding hairpin RNA gives immunity to barley yellow dwarf virus. Mol. Plant Pathol. 1, 347–356.PubMedCrossRefGoogle Scholar
  2. 2.
    Wang, M. B., Abbott, D. C., Upadhyaya, N. M., Jacobsen, J. V., and Waterhouse, P. M. (2001) Agrobacterium tumefaciens-mediated transformation of an elite Australian barley cultivar with virus resistance and reporter genes. Aust. J. Plant Physiol. 28, 149–156.Google Scholar
  3. 3.
    Jacobsen, J., Matthews, P., Abbott, D., Wang, M., and Waterhouse, P. M. (2000) Transgenic barley, in Transgenic Cereals (O'Brien, L. and Henry, R. J., eds.), American Association of Cereal Chemists, St. Paul, MN, pp. 88–114.Google Scholar
  4. 4.
    Schunmann, P., Coia, G., and Waterhouse, P. (2002) Biopharming the SimpliRED diagnostic reagent in barley, potato and tobacco. Mol. Breed 9, 113–121.CrossRefGoogle Scholar
  5. 5.
    Horvath, H., Huang, J., Wong, O., et al. (2000) The production of recombinant proteins in transgenic barley grains. Proc. Natl. Acad. Sci. USA 97, 1914–1919.PubMedCrossRefGoogle Scholar
  6. 6.
    Jensen, L. G., Politz, O., Olsen, O., Thomsen, K. K., and von Wettstein, D. (1998) Inheritance of a codon-optimised transgene expressing heat-stable (1,3-1,4)-β-glucanase in scutellum and aleurone of germinating barley. Hereditas 129, 215–225.CrossRefGoogle Scholar
  7. 7.
    Patel, M., Johnson, J., Brettell, R., Jacobsen, J., and Xue, G. (2000) Transgenic barley expressing a fungal xylanase gene in the endosperm of the developing grains. Mol. Breeding 6, 113–123.CrossRefGoogle Scholar
  8. 8.
    Matthews, P. R., Thornton, S., Gubler, F., White, R., and Jacobsen, J. V. (2002) Use of the green fluorescent protein to locate α-amylase expression in barley grains. Func. Plant Biol. 29, 1037–1043.CrossRefGoogle Scholar
  9. 9.
    Ahlandsberg, S., Sathish, P., Sun, C., and Jannson, C. (1999) Green fluorescent protein as a reporter system in the transformation of barley cultivars. Physiol. Plantarum 107, 194–200.CrossRefGoogle Scholar
  10. 10.
    Wan, Y. and Lemaux, P. G. (1994) Generation of large numbers of independently transformed fertile barley plants. Plant Physiol. 104, 37–48.PubMedGoogle Scholar
  11. 11.
    Funatsuki, H., Kuroda, H., Kihara, M., et al. (1995) Fertile transgenic barley generated by direct DNA transfer to protoplasts. Theor. Appl. Genet. 91, 702–712.CrossRefGoogle Scholar
  12. 12.
    Tingay, S., McElroy, D., Kalla, R., et al. (1997) Agrobacterium tumefaciens-mediated barley transformation. Plant J. 11, 1369–1376.CrossRefGoogle Scholar
  13. 13.
    Kohli, A., Gahakwa, D., Vain, P., Laurie, D. A., and Christou, P. (1999) Transgene expression in rice engineered through particle bombardment: molecular factors controlling stable expression and transgene silencing. Planta 208, 88–97.CrossRefGoogle Scholar
  14. 14.
    Matthews, P., Wang, M., Waterhouse, P., et al. (2001) Marker gene elimination from transgenic barley using co-transformation with adjacent “twin T-DNAs” on a standard Agrobacterium transformation vector. Mol. Breeding 7, 195–202.CrossRefGoogle Scholar
  15. 15.
    Murray, F., Brettell, R., Matthews, P., Bishop, D., and Jacobsen, J. (2004) Comparison of Agrobacterium-mediated transformation of four barley cultivars using the GFP and GUS reporter genes Plant Cell Rep. 22, 397–402.PubMedCrossRefGoogle Scholar
  16. 16.
    Trifonova, A., Madsen, S., and Olesen, A. (2001) Agrobacterium-mediated transgene delivery and integration into barley under a range of in vitro culture conditions. Plant Sci. 161, 871–880.CrossRefGoogle Scholar
  17. 17.
    Wang, M. B., Matthews, P. R., Upadhyaya, N. M., and Waterhouse, P. M. (1998) Improved vectors for Agrobacterium tumefaciens-mediated transformation of monocot plants. Acta Hortic. 461, 401–407.Google Scholar
  18. 18.
    Wang, M., Upadhyaya, N. M., Brettell, R. I. S., and Waterhouse, P. M. (1997) Intron-mediated improvement of a selectable marker gene for plant transformation using Agrobacterium tumefaciens. J. Genet. Breed. 51, 325–334.Google Scholar

Copyright information

© Humana Press Inc. 2006

Authors and Affiliations

  • John Jacobsen
  • Ingrid Venables
  • Ming-Bo Wang
  • Peter Matthews
  • Michael Ayliffe
  • Frank Gubler

There are no affiliations available

Personalised recommendations