Skip to main content

MicroRNAs and Messenger RNA Turnover

  • Protocol
MicroRNA Protocols

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 342))

  • 2242 Accesses

Abstract

RNA-induced silencing complexes (RISCs) are multiple-turnover entities that direct many rounds of site-specific target mRNA cleavage (1). A principal RISC component in all eukaryotes is a member of the Argonaute (AGO) protein family (4). AGO contains the conserved PAZ and PIWI domains, and seems to be the sole protein required for RISC-mediated activities (5). The discovery that the PIWI domain adopts a ribonuclease (RNase) H fold (68) has led to a concept of AGO as an “mRNA slicer” component of the miRNA-programmed or small interfering RNA (siRNA)-programmed RISC. The cleavage of the mRNA target occurs between the nucleotides that are complementary to positions 10 and 11 of the miRNA that guides the RISC to cleave its target mRNA, and is defined by the 5′ end of the guide RNA strand (9,10). This distance-dependent mechanism is now beginning to be understood in precise terms of structural constraints imposed on the target mRNA recognition by the molecular architecture of the AGO/guide RNA complex (11,12).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hutvagner, G. and Zamore, P. D. (2002) A microRNA in a multiple-turnover RNAi enzyme complex. Science 297, 2056–2060.

    Article  CAS  PubMed  Google Scholar 

  2. Bartel, D. P. (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116,281–297.

    Article  CAS  PubMed  Google Scholar 

  3. Yekta, S., Shih, I. H., and Bartel, D. P. (2004) MicroRNA-directed cleavage of HOXB8 mRNA. Science 304, 594–596.

    Article  CAS  PubMed  Google Scholar 

  4. Hammond, S. M., Boettcher, S., Caudy, A. A., Kobayashi, R., and Hannon, G. J. (2001) Argonaute2, a link between genetic and biochemical analyses of RNAi. Science 293, 1146–1150.

    Article  CAS  PubMed  Google Scholar 

  5. Rand, T. A., Ginalski, K., Grishin, N. V., and Wang, X. (2004) Biochemical identification of Argonaute 2 as the sole protein required for RNA-induced silencing complex activity. Proc. Natl. Acad. Sci. USA 101, 14,385–14,389.

    Article  CAS  PubMed  Google Scholar 

  6. Liu, J., Carmell, M. A., Rivas, F. V., et al. (2004) Argonaute2 is the catalytic engine of mammalian RNAi. Science 305, 1437–1441.

    Article  CAS  PubMed  Google Scholar 

  7. Parker, J. S., Roe, S. M., and Barford, D. (2004) Crystal structure of a PIWI protein suggests mechanisms for siRNA recognition and slicer activity. EMBO J. 23, 4727–4737.

    Article  CAS  PubMed  Google Scholar 

  8. Song, J. J., Smith, S. K., Hannon, G. J., and Joshua-Tor, L. (2004) Crystal structure of Argonaute and its implications for RISC slicer activity. Science 305, 1434–1437.

    Article  CAS  PubMed  Google Scholar 

  9. Elbashir, S. M., Martinez, J., Patkaniowska, A., Lendeckel, W., and Tuschl, T. (2001) Functional anatomy of siRNAs for mediating efficient RNAi in Drosophila melanogaster embryo lysate. EMBO J. 20, 6877–6888.

    Article  CAS  PubMed  Google Scholar 

  10. Elbashir, S. M., Lendeckel, W., and Tuschl, T. (2001) RNA interference is mediated by 21-and 22-nucleotide RNAs. Genes Dev. 15, 188–200.

    Article  CAS  PubMed  Google Scholar 

  11. Ma, J. B., Yuan, Y. R., Meister, G., Pei, Y., Tuschl, T., and Patel, D. J. (2005) Structural basis for 5′-end-specific recognition of guide RNA by the A. fulgidus Piwi protein. Nature 434, 666–670.

    Article  CAS  PubMed  Google Scholar 

  12. Parker, J. S., Roe, S. M., and Barford, D. (2005) Structural insights into mRNA recognition from a PIWI domain-siRNA guide complex. Nature 434, 663–666.

    Article  CAS  PubMed  Google Scholar 

  13. Belostotsky, D. A. (2004) mRNA turnover meets RNA interference. Mol. Cell. 16, 498–500.

    Article  CAS  PubMed  Google Scholar 

  14. Gazzani, S., Lawrenson, T., Woodward, C., Headon, D., and Sablowski, R. (2004) A link between mRNA turnover and RNA interference in Arabidopsis. Science 306, 1046–1048.

    Article  CAS  PubMed  Google Scholar 

  15. Orban, T. I. and Izaurralde, E. (2005) Decay of mRNAs targeted by RISC requires XRN1,the Ski complex, and the exosome. RNA 11, 459–469.

    Article  CAS  PubMed  Google Scholar 

  16. Souret, F. F., Kastenmayer, J. P., and Green, P. J. (2004) AtXRN4 degrades mRNA in Arabidopsis and its substrates include selected miRNA targets. Mol. Cell 15, 173–183.

    Article  CAS  PubMed  Google Scholar 

  17. Maquat, L. E. (2002) Molecular biology. Skiing toward nonstop mRNA decay. Science 295, 2221–2222.

    Article  CAS  PubMed  Google Scholar 

  18. Baulcombe, D. (2004) Overview of RNA interference and related processes. In: Current Protocols in Molecular Biology (Ausubel F. M., Brent R., Kingston R. E., et al., eds.), John Wiley & Sons, New York, 26.21.21–26.21.26.

    Google Scholar 

  19. Johnson, A. W. and Kolodner, R. D. (1991) Strand exchange protein 1 from Saccharomyces cerevisiae. A novel multifunctional protein that contains DNA strand exchange and exonuclease activities. J. Biol. Chem. 266, 14,046–14,054.

    CAS  PubMed  Google Scholar 

  20. Boeck, R., Lapeyre, B., Brown, C. E., and Sachs, A. B. (1998) Capped mRNA degradation intermediates accumulate in the yeast spb8-2 mutant. Mol. Cell. Biol. 18, 5062–5072.

    CAS  PubMed  Google Scholar 

  21. Casey, J. and Davidson, N. (1977) Rates of formation and thermal stabilities of RNA:DNA and DNA:DNA duplexes at high concentrations of formamide. Nucleic Acids Res. 4, 1539–1552.

    Article  CAS  PubMed  Google Scholar 

  22. Salles, F. J., Richards, W. G., and Strickland, S. (1999) Assaying the polyadenylation state of mRNAs. Methods 17, 38–45.

    Article  CAS  PubMed  Google Scholar 

  23. Reverdatto, S. V., Dutko, J. A., Chekanova, J. A., Hamilton, D. A., and Belostotsky, D. A.(2004) mRNA deadenylation by PARN is essential for embryogenesis in higher plants. RNA 10, 1200–1214.

    Article  CAS  PubMed  Google Scholar 

  24. Xie, Z., Kasschau, K. D., and Carrington, J. C. (2003) Negative Feedback Regulation of Dicer-Like1 in Arabidopsis by microRNA-Guided mRNA Degradation. Curr. Biol. 13, 784–789.

    Article  CAS  PubMed  Google Scholar 

  25. Pfeffer, S., Lagos-Quintana, M., and Tuschl, T. (2004) Cloning of small RNA molecules. In: Current Protocols in Molecular Biology (Ausubel F. M., Brent R., Kingston R. E., et al., eds.), John Wiley & Sons, New York, 26.4.1–26.4.18.

    Google Scholar 

  26. Jackson, A., Jiao, P. E., Ni, I., and Fu, G. K. (2003) Agarose gel size fractionation of RNA for the cloning of full-length cDNAs. Anal. Biochem. 323, 252–255.

    Article  CAS  PubMed  Google Scholar 

  27. Bochnig, P., Reuter, R., Bringmann, P., and Luhrmann, R. (1987) A monoclonal antibody against 2,2,7-trimethylguanosine that reacts with intact, class U, small nuclear ribonucleoproteins as well as with 7-methylguanosine-capped RNAs. Eur. J. Biochem. 168, 461–467.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc.

About this protocol

Cite this protocol

Chekanova, J.A., Belostotsky, D.A. (2006). MicroRNAs and Messenger RNA Turnover. In: Ying, SY. (eds) MicroRNA Protocols. Methods in Molecular Biology™, vol 342. Humana Press. https://doi.org/10.1385/1-59745-123-1:73

Download citation

  • DOI: https://doi.org/10.1385/1-59745-123-1:73

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-581-1

  • Online ISBN: 978-1-59745-123-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics