Skip to main content

Transgene-Like Animal Models Using Intronic MicroRNAs

  • Protocol
MicroRNA Protocols

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 342))

Abstract

Transgenic animal models are valuable tools for testing gene functions and drug mechanisms in vivo. They are also the best similitude of a human body for etiological and pathological research of diseases. All pharmaceutically developed drugs must be proven safe and effective in animals before approval by the Food and Drug Administration to be used in clinical trials. To this end, the transgenic animal models of human diseases serve as a front line for drug evaluation. However, there is currently no transgenic animal model for microRNA (miRNA) research. miRNAs, small single-stranded regulatory RNAs capable of silencing intracellular gene transcripts that contain either complete or partial complementarity to the miRNAs, are useful for the design and development of new therapies against cancer polymorphism and viral mutation. Recently, varieties of natural miRNAs have been found to be derived from hairpin-like RNA precursors in almost all eukaryotes, including yeast (Schizosaccharomyces pombe), plant (Arabidopsis), nematode (Caenorhabditis elegans), fly (Drosophila melanogaster), fish, mouse, and human, involving intracellular defense against viral infections and regulation of certain gene expressions during development. To facilitate the miRNA research in vivo, we have developed a stateof-the-art transgenic strategy for silencing specific genes in zebrafish, chicken, and mouse, using intronic miRNAs. By insertion of a hairpin-like pre-miRNA structure into the intron region of a gene, we have found that mature miRNAs were successfully transcribed by RNA polymerase (Pol)-II, coexpressed with the encoding gene transcript, and excised out of the encoding gene transcript by natural RNA splicing and processing mechanisms. In conjunction with retroviral transfection systems, the hairpin-like pre-miRNA construct was further inserted into the intron of a cellular gene for tissue-specific expression regulated by the gene promoter. Because the retroviral vectors were randomly integrated into the genome of its host cell, the most effective transgenic animal can be selected and propagated to be a stable transgenic line for future research. Here, we have shown for the first time that transgene-like animal models were generated using the intronic miRNA-expressing system described previously, which has been proven to be useful for both miRNA research and in vivo evaluation of miRNA-associated target genes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lin, S. L. and Ying S. Y. (2004) Novel RNAi therapy-intron-derived microRNA drugs. Drug Design Reviews 1, 247–255.

    Article  CAS  Google Scholar 

  2. Tuschl, T. and Borkhardt A. (2002) Small interfering RNAs: a revolutionary tool for the analysis of gene function and gene therapy. Mol. Interv. 2, 158–167.

    Article  CAS  PubMed  Google Scholar 

  3. Nelson, P., Kiriakidou M., Sharma A., Maniataki E., and Mourelatos Z. (2003) The microRNA world: small is mighty. Trends Biochem. Sci. 28, 534–539.

    Article  CAS  PubMed  Google Scholar 

  4. Ying, S. Y. and Lin S. L. (2005) Intronic microRNA (miRNA). Biochem. Biophys. Res. Commun. 326, 515–520.

    Article  CAS  PubMed  Google Scholar 

  5. Hall, I. M., Shankaranarayana G. D., Noma K., Ayoub N., Cohen A., and Grewal S. I. (2002) Establishment and maintenance of a heterochromatin domain. Science 297, 2232–2237.

    Article  CAS  PubMed  Google Scholar 

  6. Llave, C., Xie Z., Kasschau K. D., and Carrington, J. C. (2002) Cleavage of Scarecrowlike mRNA targets directed by a class of Arabidopsis miRNA. Science 297, 2053–2056.

    Article  CAS  PubMed  Google Scholar 

  7. Rhoades, M. W., Reinhart, B. J., Lim, L. P., Burge, C. B., Bartel, B., and Bartel, D. P. (2002) Prediction of plant microRNA targets. Cell 110, 513–520.

    Article  CAS  PubMed  Google Scholar 

  8. Lee, R. C., Feibaum, R. L., and Ambros, V. (1993) The C. elegans heterochromic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75, 843–854.

    Article  CAS  PubMed  Google Scholar 

  9. Reinhart, B. J., Slack, F. J., Basson, M., et al. (2000) The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 403, 901–906.

    Article  CAS  PubMed  Google Scholar 

  10. Lau, N. C., Lim, L. P., Weinstein, E. G., and Bartel, D. P. (2001) An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science 294, 858–862.

    Article  CAS  PubMed  Google Scholar 

  11. Brennecke, J., Hipfner, D. R., Stark, A., Russell, R. B., and Cohen, S. M. (2003) Bantam encodes a developmentally regulated microRNA that controls cell proliferation and regulates the proapoptotic gene hid in Drosophila. Cell 113, 25–36.

    Article  CAS  PubMed  Google Scholar 

  12. Xu, P., Vernooy, S. Y., Guo, M., and Hay, B. A. (2003) The Drosophila microRNA Mir-14 suppresses cell death and is required for normal fat metabolism. Curr. Biol. 13, 790–795.

    Article  CAS  PubMed  Google Scholar 

  13. Lagos-Quintana, M., Rauhut, R., Meyer, J., Borkhardt, A., and Tuschl, T. (2003) New microRNAs from mouse and human. RNA 9, 175–179.

    Article  CAS  PubMed  Google Scholar 

  14. Mourelatos, Z., Dostie, J., Paushkin, S., et al. (2002) miRNPs: a novel class of ribonucleoproteins containing numerous microRNAs. Genes Dev. 16, 720–728.

    Article  CAS  PubMed  Google Scholar 

  15. Zeng, Y., Wagner, E. J., and Cullen, B. R. (2002) Both natural and designed micro RNAs can inhibit the expression of cognate mRNAs when expressed in human cells. Mol. Cell 9, 1327–1333.

    Article  CAS  PubMed  Google Scholar 

  16. Hirose, Y. and Manley, J. L. (2000) RNA polymerase II and the integration of nuclear events. Genes Dev. 14, 1415–1429.

    CAS  PubMed  Google Scholar 

  17. Kramer, A. (1996) The structure and function of proteins involved in mammalian pre-mRNA splicing. Annu. Rev. Biochem. 65, 367–409.

    Article  CAS  PubMed  Google Scholar 

  18. Miyagishi, M. and Taira, K. (2002) U6 promoter-driven siRNAs with four uridine 3′ overhangs efficiently suppress targeted gene expression in mammalian cells. Nat. Biotechnol. 20, 497–500.

    Article  CAS  PubMed  Google Scholar 

  19. Lee, N. S., Dohjima, T., Bauer, G., et al. (2002) Expression of small interfering RNAs targeted against HIV-1 rev transcripts in human cells. Nat. Biotechnol. 20, 500–505.

    CAS  PubMed  Google Scholar 

  20. Paul, C. P., Good, P. D., Winer, I., and Engelke, D. R. (2002) Effective expression of small interfering RNA in human cells. Nat. Biotechnol. 20, 505–508.

    Article  CAS  PubMed  Google Scholar 

  21. Xia, H., Mao, Q., Paulson, H. L., and Davidson, B. L. (2002) siRNA-mediated gene silencing in vitro and in vivo. Nat. Biotechnol. 20, 1006–1010.

    Article  CAS  PubMed  Google Scholar 

  22. McCaffrey, A. P., Meuse, L., Pham, T. T., Conklin, D. S., Hannon, G. J., and Kay, M. A. (2002) RNA interference in adult mice. Nature 418, 38–39.

    Article  CAS  PubMed  Google Scholar 

  23. Gunnery, S., Ma, Y., and Mathews, M. B. (1999) Termination sequence requirements vary among genes transcribed by RNA polymerase III. J. Mol. Biol. 286, 745–757.

    Article  CAS  PubMed  Google Scholar 

  24. Schramm, L. and Hernandez, N. (2002) Recruitment of RNA polymerase III to its target promoters. Genes Dev. 16, 2593–2620.

    Article  CAS  PubMed  Google Scholar 

  25. Sledz, C. A., Holko, M., de Veer, M. J., Silverman, R. H., and Williams, B. R. (2003) Activation of the interferon system by short-interfering RNAs. Nat. Cell Biol. 5, 834–839.

    Article  CAS  PubMed  Google Scholar 

  26. Lin, S. L. and Ying, S. Y. (2004) Combinational therapy for HIV-1 eradication and vaccination. Intl. J. Oncol. 24, 81–88.

    Google Scholar 

  27. Stark, G. R., Kerr, I. M., Williams, B. R, Silverman, R. H., and Schreiber, R. D. (1998) How cells respond to interferons. Annu. Rev. Biochem. 67, 227–264.

    Article  CAS  PubMed  Google Scholar 

  28. Lin, S. L. and Ying, S. Y. (2004) New drug design for gene therapy-taking advantage of introns. Lett. Drug Design Discovery 1, 256–262.

    Article  CAS  Google Scholar 

  29. Lin, S. L., Chang, D., Wu, D. Y., and Ying, S. Y. (2003) A novel RNA splicing-mediated gene silencing mechanism potential for genome evolution. Biochem. Biophys. Res. Commun. 310, 754–760.

    Article  CAS  PubMed  Google Scholar 

  30. Lin, S. L., Chang, D., and Ying, S. Y. (2005) Asymmetry of intronic pre-miRNA structures in functional RISC assembly. Gene 356, 32–38.

    Article  CAS  PubMed  Google Scholar 

  31. Ambros, V., Lee, R. C., Lavanway, A., Williams, P. T., and Jewell, D. (2003) MicroRNAs and other tiny endogenous RNAs in C. elegans. Curr. Biol. 13, 807–818.

    Article  CAS  PubMed  Google Scholar 

  32. Butz, S. and Larue, L. (1995) Expression of catenins during mouse embryonic development and in adult tissues. Cell Adhes. Commun. 3, 337–352.

    Article  CAS  PubMed  Google Scholar 

  33. Filipovska, J. and Konarska, M. M. (2000) Specific HDV RNA-templated transcription by pol II in vitro. RNA 6, 41–54.

    Article  CAS  PubMed  Google Scholar 

  34. Modahl, L. E., Macnaughton, T. B., Zhu, N., Johnson, D. L., and Lai, M. M. (2000) RNAdependent replication and transcription of hepatitis delta virus RNA involve distinct cellular RNA polymerases. Mol. Cell Biol. 20, 6030–6039.

    Article  CAS  PubMed  Google Scholar 

  35. Abzhanov, A., Protas, M., Grant, B. R., Grant, P. R., and Tabin, C. J. (2004) Bmp4 and morphological variation of beaks in Darwin’s finches. Science 305, 1462–1465.

    Article  CAS  PubMed  Google Scholar 

  36. Wu, P., Jiang, T. X., Suksaweang, S., Widelitz, R. B., and Chuong, C. M. (2004) Molecular shaping of the beak. Science 305, 1465–1466.

    Article  CAS  PubMed  Google Scholar 

  37. Rodriguez, A., Griffiths-Jones, S., Ashurst, J. L., and Bradley, A. (2004) Identification of mammalian microRNA host genes and transcription units. Genome Res. 14, 1902–1910.

    Article  CAS  PubMed  Google Scholar 

  38. Clement, J. Q., Qian, L., Kaplinsky, N., and Wilkinson, M. F. (1999) The stability and fate of a spliced intron from vertebrate cells. RNA 5, 206–220.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc.

About this protocol

Cite this protocol

Lin, SL., Chang, SJ.E., Ying, SY. (2006). Transgene-Like Animal Models Using Intronic MicroRNAs. In: Ying, SY. (eds) MicroRNA Protocols. Methods in Molecular Biology™, vol 342. Humana Press. https://doi.org/10.1385/1-59745-123-1:321

Download citation

  • DOI: https://doi.org/10.1385/1-59745-123-1:321

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-581-1

  • Online ISBN: 978-1-59745-123-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics