Skip to main content

Gene Silencing In Vitro and In Vivo Using Intronic MicroRNAs

  • Protocol
MicroRNA Protocols

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 342))

Abstract

MicroRNAs (miRNAs), small single-stranded regulatory RNAs capable of interfering with intracellular messenger RNAs (mRNAs) that contain either complete or partial complementarity, are useful for the design of new therapies against cancer polymorphism and viral mutation. Numerous miRNAs have been reported to induce RNA interference (RNAi), a posttranscriptional gene-silencing mechanism. Recent evidence also indicates that they are involved in the transcriptional regulation of genome activities. They were first discovered in Caenorhabditis elegans as native RNA fragments that modulate a wide range of genetic regulatory pathways during embryonic development, and are now recognized as small gene silencers transcribed from the noncoding regions of a genome. In humans, nearly 97% of the genome is noncoding DNA, which varies from one individual to another, and changes in these sequences are frequently noted to manifest clinical and circumstantial malfunction. Type 2 myotonic dystrophy and fragile X syndrome were found to be associated with miRNAs derived from introns. Intronic miRNA is a new class of miRNAs derived from the processing of nonprotein-coding regions of gene transcripts. The intronic miRNAs differ uniquely from previously described intergenic miRNAs in the requirement of RNA polymerase (Pol)-II and spliceosomal components for its biogenesis. Several kinds of intronic miRNAs have been identified in C. elegans, mouse, and human cells; however, neither function nor application has been reported. Here, we show for the first time that intron-derived miRNA is not only able to induce RNAi in mammalian cells but also in fish, chicken embryos, and adult mice, demonstrating the evolutionary preservation of this gene regulation system in vivo. These miRNA-mediated animal models provide artificial means to reproduce the mechanisms of miRNA-induced disease in vivo and will shed further light on miRNA-related therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ambros, V. (2004) The functions of animal microRNAs. Nature 350, 431–355.

    Google Scholar 

  2. Nelson, P., Kiriakidou, M., Sharma, A., Maniataki, E., and Mourelatos, Z. (2003) The microRNA world: small is mighty. Trends Biochem. Sci. 28, 534–539.

    Article  CAS  PubMed  Google Scholar 

  3. Ying, S. Y. and Lin, S. L. (2005) Intronic microRNA (miRNA). Biochem. Biophys. Res. Commun. 326, 515–520.

    Article  CAS  PubMed  Google Scholar 

  4. Lin, S. L. and Ying, S. Y. (2004) Novel RNAi therapy-intron-derived microRNA drugs. Drug Design Reviews 1, 247–255.

    Article  CAS  Google Scholar 

  5. Tuschl, T. and Borkhardt, A. (2002) Small interfering RNAs: a revolutionary tool for the analysis of gene function and gene therapy. Mol. Interv. 2, 158–167.

    Article  CAS  PubMed  Google Scholar 

  6. Ambros, V. (1989) A hierarchy of regulatory genes controls a larva-to-adult developmen-tal switch in C. elegans. Cell 57, 49–57.

    CAS  Google Scholar 

  7. Hall, I. M., Shankaranarayana, G. D., Noma, K., Ayoub, N., Cohen, A., and Grewal, S. I. (2002) Establishment and maintenance of a heterochromatin domain. Science 297, 2232–2237.

    Article  CAS  PubMed  Google Scholar 

  8. Llave, C., Xie, Z., Kasschau, K. D., and Carrington, J. C. (2002) Cleavage of Scarecrow-like mRNA targets directed by a class of Arabidopsis miRNA. Science 297, 2053–2056.

    Article  CAS  PubMed  Google Scholar 

  9. Rhoades, M. W., Reinhart, B. J., Lim, L. P., Burge, C. B., Bartel, B., and Bartel, D. P. (2002) Prediction of plant microRNA targets. Cell 110, 513–520.

    Article  CAS  PubMed  Google Scholar 

  10. Lee, R. C., Feibaum, R. L., and Ambros, V. (1993) The C. elegans heterochromic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75, 843–854.

    Article  CAS  PubMed  Google Scholar 

  11. Reinhart, B. J., Slack, F. J., Basson, M., et al. (2000) The 21-nucleotide let-7 RNA regu-lates developmental timing in Caenorhabditis elegans. Nature 403, 901–906.

    Article  CAS  PubMed  Google Scholar 

  12. Lau, N. C., Lim, L. P., Weinstein, E. G., and Bartel, D. P. (2001) An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science 294, 858–862.

    Article  CAS  PubMed  Google Scholar 

  13. Brennecke, J., Hipfner, D. R., Stark, A., Russell, R. B., and Cohen, S. M. (2003) Bantam encodes a developmentally regulated microRNA that controls cell proliferation and regu-lates the proapoptotic gene hid in Drosophila. Cell 113, 25–36.

    Article  CAS  Google Scholar 

  14. Xu, P., Vernooy, S. Y., Guo, M., and Hay, B. A. (2003) The Drosophila microRNA Mir-14 suppresses cell death and is required for normal fat metabolism. Curr. Biol. 13, 790–795.

    Article  CAS  PubMed  Google Scholar 

  15. Lagos-Quintana, M., Rauhut, R., Meyer, J., Borkhardt, A., and Tuschl, T. (2003) New microRNAs from mouse and human. RNA 9, 175–179.

    Article  CAS  PubMed  Google Scholar 

  16. Mourelatos, Z., Dostie, J., Paushkin, S., et al. (2002) miRNPs: a novel class of ribonucle-oproteins containing numerous microRNAs. Genes Dev. 16, 720–728.

    Article  CAS  PubMed  Google Scholar 

  17. Zeng, Y., Wagner, E. J., and Cullen, B. R. (2002) Both natural and designed micro RNAs can inhibit the expression of cognate mRNAs when expressed in human cells. Mol. Cell 9, 1327–1333.

    Article  CAS  PubMed  Google Scholar 

  18. Zeng, Y., Yi, R., and Cullen, B. R. (2003) MicroRNAs and small interfering RNAs can in-hibit mRNA expression by similar mechanisms. Proc. Natl. Acad. Sci. USA 100, 9779–9784.

    Article  CAS  PubMed  Google Scholar 

  19. Carthew, R. W. (2001) Gene silencing by double-stranded RNA. Curr. Opin. Cell Biol. 13, 244–248.

    Article  CAS  PubMed  Google Scholar 

  20. Lin, S. L., Chang, D., Wu, D. Y., and Ying, S. Y. (2003) A novel RNA splicing-mediated gene silencing mechanism potential for genome evolution. Biochem. Biophys. Res. Commun. 310, 754–760.

    Article  CAS  PubMed  Google Scholar 

  21. Lin, S. L., Chang, D., and Ying, S. Y. (2005) Asymmetry of intronic pre-miRNA structures in functional RISC assembly. Gene 356, 32–38.

    Article  CAS  PubMed  Google Scholar 

  22. Ying, S. Y. and Lin S. L. (2004) Intron-derived microRNAs-fine tuning of gene func-tions. Gene 342, 25–28.

    Article  CAS  PubMed  Google Scholar 

  23. Kramer, A. (1996) The structure and function of proteins involved in mammalian pre-mRNA splicing. Annu. Rev. Biochem. 65, 367–409.

    Article  CAS  PubMed  Google Scholar 

  24. Clement, J. Q., Qian, L., Kaplinsky N., and Wilkinson, M. F. (1999) The stability and fate of a spliced intron from vertebrate cells. RNA 5, 206–220.

    Article  CAS  PubMed  Google Scholar 

  25. Nott, A., Meislin, S. H., and Moore, M. J. (2003) A quantitative analysis of intron effects on mammalian gene expression. RNA 9, 607–617.

    Article  CAS  PubMed  Google Scholar 

  26. Lee, Y., Kim, M., Han, J., et al. (2004) MicroRNA genes are transcribed by RNA poly-merase II. EMBO J. 23, 4051–4060.

    Article  CAS  PubMed  Google Scholar 

  27. Lee, Y., Ahn, C., Han, J., et al. (2003) The nuclear RNase III Drosha initiates microRNA processing. Nature 425, 415–419.

    Article  CAS  PubMed  Google Scholar 

  28. Lund, E., Guttinger, S., Calado, A., Dahlberg, J. E., and Kutay, U. (2004) Nuclear export of microRNA precursors. Science 303, 95–98.

    Article  CAS  PubMed  Google Scholar 

  29. Yi, R., Qin, Y., Macara, I. G., and Cullen, B. R. (2003) Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev. 17, 3011–3016.

    Article  CAS  PubMed  Google Scholar 

  30. Schwarz, D. S., Hutvagner, G., Du, T., Xu, Z., Aronin, N., and Zamore, P. D. (2003) Asymmetry in the assembly of the RNAi enzyme complex. Cell 115, 199–208.

    Article  CAS  PubMed  Google Scholar 

  31. Khvorova, A., Reynolds, A., and Jayasena, S. D. (2003) Functional siRNAs and miRNAs exhibit strand bias. Cell 115, 209–216.

    Article  CAS  PubMed  Google Scholar 

  32. Lee, Y. S., ONakahara, K., Pham, J. W., et al. (2004) Distinct roles for Drosophila Dicer-1 and Dicer-2 in the siRNA/miRNA silencing pathways. Cell 117, 69–81.

    Article  CAS  PubMed  Google Scholar 

  33. Tang, G. (2005) siRNA and miRNA: an insight into RISCs. Trends Biochem. Sci. 30, 106-114.

    Google Scholar 

  34. Rodriguez, A., Griffiths-Jones, S., Ashurst, J. L., and Bradley, A. (2004) Identification of mammalian microRNA host genes and transcription units. Genome Res. 14, 1902–1910.

    Article  CAS  PubMed  Google Scholar 

  35. Ambros, V., Lee, R. C., Lavanway, A., Williams, P. T., and Jewell, D. (2003) MicroRNAs and other tiny endogenous RNAs in C. elegans. Curr. Biol. 13, 807–818.

    Article  CAS  Google Scholar 

  36. Jin, P., Alisch, R. S., and Warren, S. T. (2004) RNA and microRNAs in fragile X mental retardation. Nat. Cell. Biol. 6, 1048–1053.

    Article  CAS  PubMed  Google Scholar 

  37. Eberhart, D. E., Malter, H. E., Feng, Y., and Warren, S. T. (1996) The fragile X mental retardation protein is a ribonucleoprotein containing both nuclear localization and nuclear export signals. Hum. Mol. Genet. 5, 1083–1091.

    Article  CAS  PubMed  Google Scholar 

  38. Lin, S. L. and Ying, S. Y. (2004) New drug design for gene therapy-taking advantage of introns. Lett. Drug Design Discovery 1, 256–262.

    Article  CAS  Google Scholar 

  39. Zhang, G., Taneja, K. L., Singer, R. H., and Green, M. R. (1994) Localization of pre-mRNA splicing in mammalian nuclei. Nature 372, 809–812.

    CAS  PubMed  Google Scholar 

  40. Ghosh, S. and Garcia-Blanco, M. A. (2000) Coupled in vitro synthesis and splicing of RNA polymerase II transcripts. RNA 6, 1325–1334.

    Article  CAS  PubMed  Google Scholar 

  41. Stark, G. R., Kerr, I. M., Williams, B. R., Silverman, R. H., and Schreiber, R. D. (1998) How cells respond to interferons. Annu. Rev. Biochem. 67, 227–264.

    Article  CAS  PubMed  Google Scholar 

  42. Sledz, C. A., Holko, M., de Veer M. J., Silverman, R. H., and Williams, B. R. (2003) Activation of the interferon system by short-interfering RNAs. Nat. Cell Biol. 5, 834–839.

    Article  CAS  PubMed  Google Scholar 

  43. Boden, D., Pusch, O., Silbermann, R., Lee, F., Tucker, L., and Ramratnam, B. (2004) Enhanced gene silencing of HIV-1 specific siRNA using microRNA designed hairpins. Nucleic Acid Res. 32, 1154–1158.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc.

About this protocol

Cite this protocol

Lin, SL., Ying, SY. (2006). Gene Silencing In Vitro and In Vivo Using Intronic MicroRNAs. In: Ying, SY. (eds) MicroRNA Protocols. Methods in Molecular Biology™, vol 342. Humana Press. https://doi.org/10.1385/1-59745-123-1:295

Download citation

  • DOI: https://doi.org/10.1385/1-59745-123-1:295

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-581-1

  • Online ISBN: 978-1-59745-123-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics