Skip to main content

Methods for Analyzing MicroRNA Expression and Function During Hematopoietic Lineage Differentiation

  • Protocol
MicroRNA Protocols

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 342))

Abstract

MicroRNAs (miRNAs), an abundant class of approx 22-nucleotide (nt) small RNAs that control gene expression at the posttranscriptional level, may play important roles during normal hematopoiesis and leukemogenesis. This chapter focuses on the methods and strategies for dissecting miRNA function during hematopoietic lineage differentiation. We describe a modified miRNA cloning method and expression analysis approach for determining miRNA expression during hematopoietic lineage differentiation. We illustrate a retroviral vector and a general strategy for the ectopic expression of miRNAs in hematopoietic stem/progenitor cells. We discuss in vitro and in vivo functional assays that can be used to examine the roles of miRNAs during hematopoietic lineage differentiation. The methods and principles described here should also be applicable to study the roles of miRNAs in the differentiation and function of nonhematopoietic cell types.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Lee, R. C., Feinbaum, R. L., and Ambros, V. (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75, 843–854.

    Article  CAS  PubMed  Google Scholar 

  2. Wightman, B., Ha, I.and Ruvkun, G. (1993) Posttranscriptional regulation of the hetero-chronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell 75, 855–862.

    Article  CAS  PubMed  Google Scholar 

  3. Ambros, V. (2003) MicroRNA pathways in flies and worms: growth, death, fat, stress, and timing. Cell 113, 673–676.

    Article  CAS  PubMed  Google Scholar 

  4. Bartel, D. P. and Chen, C. Z. (2004) Micromanagers of gene expression: the potentially widespread influence of metazoan microRNAs. Nat. Rev. Genet. 5, 396–400.

    Article  CAS  PubMed  Google Scholar 

  5. Bartel, D. P. (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116, 281–297.

    Article  CAS  PubMed  Google Scholar 

  6. Lee, R. C. and Ambros, V. (2001) An extensive class of small RNAs in Caenorhabditis elegans. Science 294, 862–864.

    Article  CAS  PubMed  Google Scholar 

  7. Lau, N. C., Lim, L. P., Weinstein, E. G., and Bartel, D. P. (2001) An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science 294, 858–862.

    Article  CAS  PubMed  Google Scholar 

  8. Lagos-Quintana, M., Rauhut, R., Lendeckel, W., and Tuschl, T. (2001) Identification of novel genes coding for small expressed RNAs. Science 294, 853–858.

    Article  CAS  PubMed  Google Scholar 

  9. Lagos-Quintana, M., Rauhut, R., Meyer, J., Borkhardt, A., and Tuschl, T. (2003) New microRNAs from mouse and human. RNA 9, 175–179.

    Article  CAS  PubMed  Google Scholar 

  10. Lagos-Quintana, M., Rauhut, R., Yalcin, A., Meyer, J., Lendeckel, W., and Tuschl, T. (2002) Identification of tissue-specific microRNAs from mouse. Curr. Biol. 12, 735–739.

    Article  CAS  PubMed  Google Scholar 

  11. Mourelatos, Z., Dostie, J., Paushkin, S., et al. (2002) miRNPs: a novel class of ribonucle-oproteins containing numerous microRNAs. Genes Dev. 16, 720–728.

    Article  CAS  PubMed  Google Scholar 

  12. Ambros, V., Lee, R. C., Lavanway, A., Williams, P. T., and Jewell, D. (2003) MicroRNAs and other tiny endogenous RNAs in C. elegans. Curr. Biol. 13, 807–818.

    Article  CAS  PubMed  Google Scholar 

  13. Dostie, J., Mourelatos, Z., Yang, M., Sharma, A., and Dreyfuss, G. (2003) Numerous microRNPs in neuronal cells containing novel microRNAs. RNA 9, 180–186.

    Article  CAS  PubMed  Google Scholar 

  14. Houbaviy, H. B., Murray, M. F., and Sharp, P. A. (2003) Embryonic stem cell-specific MicroRNAs. Dev. Cell 5, 351–358.

    Article  CAS  PubMed  Google Scholar 

  15. Michael, M. Z., O’Connor, S. M., van Holst Pellekaan N. G., Young G. P., and James R. J. (2003) Reduced accumulation of specific microRNAs in colorectal neoplasia. Mol. Cancer Res. 1, 882–891.

    CAS  PubMed  Google Scholar 

  16. Lim, L. P., Lau, N. C., Weinstein, E. G., et al. (2003) The microRNAs of Caenorhabditis elegans. Genes Dev. 17, 991–1008.

    Article  CAS  PubMed  Google Scholar 

  17. Lim, L. P., Glasner, M. E., Yekta, S., Burge, C. B., and Bartel, D. P. (2003) Vertebrate microRNA genes. Science 299, 1540.

    Article  CAS  PubMed  Google Scholar 

  18. Lai, E. C., Tomancak, P., Williams, R. W., and Rubin, G. M. (2003) Computational iden-tification of Drosophila microRNA genes. Genome Biol. 4, R42.

    Article  PubMed  Google Scholar 

  19. Grad, Y., Aach, J., Hayes, G. D., et al. (2003) Computational and experimental identifica-tion of C. elegans microRNAs. Mol. Cell 11, 1253–1263.

    Article  CAS  PubMed  Google Scholar 

  20. Kim, J., Krichevsky, A., Grad, Y., et al. 2004 Identification of many microRNAs that copurify with polyribosomes in mammalian neurons. Proc. Natl. Acad. Sci. USA 101, 360–365.

    Article  CAS  PubMed  Google Scholar 

  21. Aukerman, M. J. and Sakai, H. (2003) Regulation of flowering time and floral organ identity by a MicroRNA and its APETALA2-like target genes. Plant Cell 15, 2730–2741.

    Article  CAS  PubMed  Google Scholar 

  22. Chen, X. (2004) A microRNA as a translational repressor of APETALA2 in Arabidopsis flower development. Science 303, 2022–2025.

    Article  CAS  PubMed  Google Scholar 

  23. Emery, J. F., Floyd, S. K., Alvarez, J., et al. (2003) Radial patterning of Arabidopsis shoots by class III HD-ZIP and KANADI genes. Curr. Biol. 13, 1768–1774.

    Article  CAS  PubMed  Google Scholar 

  24. Palatnik, J. F., Allen, E., Wu, X., et al. (2003) Control of leaf morphogenesis by microRNAs. Nature 425, 257–263.

    Article  CAS  PubMed  Google Scholar 

  25. Reinhart, B. J., Slack, F. J., Basson, M., et al. (2000) The 21 nucleotide let-7 RNA regu-lates developmental timing in Caenorhabditis elegans. Nature 403, 901–906.

    Article  CAS  PubMed  Google Scholar 

  26. Pasquinelli, A. E., Reinhart, B. J., Slack, F., et al. (2000) Conservation across animal phylogeny of the sequence and temporal regulation of the 21 nucleotide let-7 heterochronic regulatory RNA. Nature 408, 86–89.

    Article  CAS  PubMed  Google Scholar 

  27. Chang, S., Johnston, R. J. Jr., Frokjaer-Jensen, C., Lockery, S., and Hobert, O. (2004) MicroRNAs act sequentially and asymmetrically to control chemosensory laterality in the nematode. Nature 430, 785–789.

    Article  CAS  PubMed  Google Scholar 

  28. Johnston, R. J. and Hobert, O. (2003) A microRNA controlling left/right neuronal asym-metry in Caenorhabditis elegans. Nature 426, 845–849.

    Article  CAS  PubMed  Google Scholar 

  29. Brennecke, J., Hipfner, D. R., Stark, A., Russell, R. B., and Cohen, S. M. (2003) bantam encodes a developmentally regulated microRNA that controls cell proliferation and regu-lates the proapoptotic gene hid in Drosophila. Cell 113, 25–36.

    Article  CAS  PubMed  Google Scholar 

  30. Hipfner, D. R., Weigmann, K., and Cohen, S. M. (2002) The bantam gene regulates Droso-phila growth. Genetics 161, 1527–1537.

    CAS  PubMed  Google Scholar 

  31. Xu, P., Vernooy, S. Y., Guo, M., and Hay, B. A. (2003) The Drosophila microRNA Mir-14 suppresses cell death and is required for normal fat metabolism. Curr. Biol. 13, 790–795.

    Article  CAS  PubMed  Google Scholar 

  32. Chen, C. Z., Li, L., Lodish, H. F., and Bartel, D. P. (2004) MicroRNAs modulate hemato-poietic lineage differentiation. Science 303, 83–86.

    Article  CAS  PubMed  Google Scholar 

  33. Poy, M. N., Eliasson, L., Krutzfeldt, J., et al. (2004) A pancreatic islet-specific microRNA regulates insulin secretion. Nature 432, 226–230.

    Article  CAS  PubMed  Google Scholar 

  34. Esau, C., Kang, X., Peralta, E., et al. (2004) MicroRNA-143 regulates adipocyte differen-tiation. J. Biol. Chem. 279, 52,361–52,365.

    Article  CAS  PubMed  Google Scholar 

  35. Lewis, B. P., Burge, C. B., and Bartel, D. P. (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120, 15–20.

    Article  CAS  PubMed  Google Scholar 

  36. Lewis, B. P., Shih, I. H., Jones-Rhoades, M. W., Bartel, D. P., and Burge, C. B. (2003) Prediction of mammalian microRNA targets. Cell 115, 787–798.

    Article  CAS  PubMed  Google Scholar 

  37. Stark, A., Brennecke, J., Russell, R. B., and Cohen, S. M. (2003) Identification of Droso-phila MicroRNA Targets. PLoS Biol. 1, E60.

    Article  PubMed  Google Scholar 

  38. Lai, E. C. (2004) Predicting and validating microRNA targets. Genome Biol. 5, 115.

    Article  PubMed  Google Scholar 

  39. John, B., Enright, A. J., Aravin, A., Tuschl, T., Sander, C., and Marks, D. S. (2004) Human MicroRNA targets. PLoS Biol. 2, e363.

    Article  PubMed  Google Scholar 

  40. Kiriakidou, M., Nelson, P. T., Kouranov, A., et al. (2004) A combined computational-experimental approach predicts human microRNA targets. Genes Dev. 18, 1165–1178.

    Article  CAS  PubMed  Google Scholar 

  41. Enright, A. J., John, B., Gaul, U., Tuschl, T., Sander, C., and Marks, D. S. (2003) MicroRNA targets in Drosophila. Genome Biol. 5, R1.

    Google Scholar 

  42. Rajewsky, N. and Socci, N. D. (2004) Computational identification of microRNA targets. Dev. Biol. 267, 529–535.

    Article  CAS  PubMed  Google Scholar 

  43. Krek, A., Grun, D., Poy, M. N., et al. (2005) Combinatorial microRNA target predictions. Nat. Genet. 37, 495–500.

    Article  CAS  PubMed  Google Scholar 

  44. Naviaux, R. K., Costanzi, E., Haas, M., and Verma, I. M. (1996) The pCL vector system: rapid production of helper-free, high-titer, recombinant retroviruses. J. Virol. 70, 5701–5705.

    CAS  PubMed  Google Scholar 

  45. Liang, R. Q., Li, W., Li, Y., et al. (2005) An oligonucleotide microarray for microRNA expression analysis based on labeling RNA with quantum dot and nanogold probe. Nucleic Acids Res. 33, e17.

    Article  PubMed  Google Scholar 

  46. Baskerville, S. and Bartel, D. P. (2005) Microarray profiling of microRNAs reveals fre-quent coexpression with neighboring miRNAs and host genes. RNA 11, 241–247.

    Article  CAS  PubMed  Google Scholar 

  47. Sioud, M. and Rosok, O. (2004) Profiling microRNA expression using sensitive cDNA probes and filter arrays. Biotechniques 37, 574–576, 578-580.

    CAS  PubMed  Google Scholar 

  48. Miska, E. A., Alvarez-Saavedra, E., Townsend, M., et al. (2004) Microarray analysis of microRNA expression in the developing mammalian brain. Genome Biol. 5, R68.

    Article  PubMed  Google Scholar 

  49. Liu, C. G., Calin, G. A., Meloon, B., et al. (2004) An oligonucleotide microchip for genome-wide microRNA profiling in human and mouse tissues. Proc. Natl. Acad. Sci. USA 101, 9740–9744.

    Article  CAS  PubMed  Google Scholar 

  50. Barad, O., Meiri, E., Avniel, A., et al. (2004) MicroRNA expression detected by oligo-nucleotide microarrays: system establishment and expression profiling in human tissues. Genome Res. 14, 2486–2494.

    Article  CAS  PubMed  Google Scholar 

  51. Krichevsky, A. M., King, K. S., Donahue, C. P., Khrapko, K., and Kosik, K. S. (2003) A microRNA array reveals extensive regulation of microRNAs during brain development. RNA 9, 1274–1281.

    Article  CAS  PubMed  Google Scholar 

  52. Allawi, H. T., Dahlberg, J. E., Olson, S., et al. (2004) Quantitation of microRNAs using a modified Invader assay. RNA 10, 1153–1161.

    Article  CAS  PubMed  Google Scholar 

  53. Berezikov, E., Guryev, V., van de Belt J., Wienholds, E., Plasterk, R. H., and Cuppen, E. (2005) Phylogenetic shadowing and computational identification of human microRNA genes. Cell 120, 21–24.

    Article  CAS  PubMed  Google Scholar 

  54. Aravin, A. A., Lagos-Quintana, M., Yalcin, A., et al. (2003) The small RNA profile dur-ing Drosophila melanogaster development. Dev. Cell 5, 337–350.

    Article  CAS  PubMed  Google Scholar 

  55. Pui, J. C., Allman, D., Xu, L., et al. (1999) Notch1 expression in early lymphopoiesis influ-ences B versus T lineage determination. Immunity 11, 299–308.

    Article  CAS  PubMed  Google Scholar 

  56. Shivdasani, R. A. and Orkin, S. H. (1996) The transcriptional control of hematopoiesis. Blood 87, 4025–4039.

    CAS  PubMed  Google Scholar 

  57. Gauwerky, C. E. and Croce, C. M. (1993) Chromosomal translocations in leukaemia. Semin. Cancer Biol. 4, 333–340.

    CAS  PubMed  Google Scholar 

  58. Maillard, I., Adler, S. H., and Pear, W. S. (2003) Notch and the immune system. Immunity 19, 781–791.

    Article  CAS  PubMed  Google Scholar 

  59. Lee, Y., Ahn, C., Han, J., et al. (2003) The nuclear RNase III Drosha initiates microRNA processing. Nature 425, 415–419.

    Article  CAS  PubMed  Google Scholar 

  60. Denli, A. M., Tops, B. B., Plasterk, R. H., Ketting, R. F., and Hannon, G. J. (2004) Processing of primary microRNAs by the Microprocessor complex. Nature 432, 231–235.

    Article  CAS  PubMed  Google Scholar 

  61. Yi, R., Qin, Y., Macara, I. G., and Cullen, B. R. (2003) Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev. 17, 3011–3016.

    Article  CAS  PubMed  Google Scholar 

  62. Lund, E., Guttinger, S., Calado, A., Dahlberg, J. E., and Kutay, U. (2004) Nuclear export of microRNA precursors. Science 303, 95–98.

    Article  CAS  PubMed  Google Scholar 

  63. Grishok, A., Pasquinelli, A. E., Conte, D., et al. (2001) Genes and mechanisms related to RNA interference regulate expression of the small temporal RNAs that control C. elegans developmental timing. Cell 106, 23–24.

    Article  CAS  PubMed  Google Scholar 

  64. Ketting, R. F., Fischer, S. E., Bernstein, E., Sijen, T., Hannon, G. J., and Plasterk, R. H. (2001) Dicer functions in RNA interference and in synthesis of small RNA involved in developmental timing in C. elegans. Genes Dev. 15, 2654–2659.

    Article  CAS  PubMed  Google Scholar 

  65. Hutvágner, G., McLachlan, J., Pasquinelli, A. E., Balint, E., Tuschl, T., and Zamore, P. D. (2001) A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA. Science 293, 834–838.

    Article  PubMed  Google Scholar 

  66. Metcalf, D. and Nicola, N. A. (1995) The Hematopoietic Colony-Stimulating Factors. In: Biology to Clinical Applications, Cambridge University Press Cambridge, UK.

    Google Scholar 

  67. Eaves, A. C. and Eaves, C. J. (1988) Maintenance and proliferation control of primitive hemopoietic progenitors in long-term cultures of human marrow cells. Blood Cells 14, 355–368.

    CAS  PubMed  Google Scholar 

  68. Collins, L. S. and Dorshkind, K. (1987) A stromal cell line from myeloid long-term bone marrow cultures can support myelopoiesis and B lymphopoiesis. J. Immunol. 138, 1082–1087.

    CAS  PubMed  Google Scholar 

  69. Nakano, T., Kodama, H., and Honjo, T. (1994) Generation of lymphohematopoietic cells from embryonic stem cells in culture. Science 265, 1098–1101.

    Article  CAS  PubMed  Google Scholar 

  70. Jenkinson, E. J. and Anderson, G. (1994) Fetal thymic organ cultures. Curr. Opin. Immu-nol. 6, 293–297.

    Article  CAS  Google Scholar 

  71. Hare, K. J., Jenkinson, E. J., and Anderson, G. (1999) In vitro models of T cell develop-ment. Semin. Immunol. 11, 3–12.

    Article  CAS  PubMed  Google Scholar 

  72. Schmitt, T. M., de Pooter, R. F., Gronski, M. A., Cho, S. K., Ohashi, P. S., and Zuniga-Pflucker, J. C. (2004) Induction of T cell development and establishment of T cell compe-tence from embryonic stem cells differentiated in vitro. Nat. Immunol. 5, 410–417.

    Article  CAS  PubMed  Google Scholar 

  73. Chen, C. Z., Li, L., Li, M., and Lodish, H. F. (2003) The endoglin (positive) sca-1(posi-tive) rhodamine(low) phenotype defines a near-homogeneous population of long-term repopulating hematopoietic stem cells. Immunity 19, 525–533.

    Article  PubMed  Google Scholar 

  74. Chen, C. Z., Li, M., de Graaf, D., et al. (2002) Identification of endoglin as a functional marker that defines long-term repopulating hematopoietic stem cells. Proc. Natl. Acad. Sci. USA 99, 15,468–15,473.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc.

About this protocol

Cite this protocol

Min, H., Chen, CZ. (2006). Methods for Analyzing MicroRNA Expression and Function During Hematopoietic Lineage Differentiation. In: Ying, SY. (eds) MicroRNA Protocols. Methods in Molecular Biology™, vol 342. Humana Press. https://doi.org/10.1385/1-59745-123-1:209

Download citation

  • DOI: https://doi.org/10.1385/1-59745-123-1:209

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-581-1

  • Online ISBN: 978-1-59745-123-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics