Skip to main content

Structure Analysis of MicroRNA Precursors

  • Protocol
MicroRNA Protocols

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 342))

Abstract

MicroRNA biogenesis occurs in several steps from their precursors having irregular hairpin structures. The highly variable architecture of these stem-and-loop structures, which have terminal loops of various sizes and diverse structure destabilizing motifs present in their stem sections, may strongly influence the process of microRNA liberation. In order to better understand this process, more details regarding its structural basis are required A substantial part of this information may be derived from the structure analysis of microRNA precursor using biochemical methods. Here we show how the analysis with the use of various nucleases and metal ions is performed. The presented protocols include the design of DNA template-phage promoter fusions to generate natural precursor ends, and the tests performed to check the sequence and structure homogeneity of the in vitro transcripts prior to probing their structures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lee, R. and Ambros, V. (2001) An extensive class of small RNAs in Caenorhabditis elegans. Science 294, 862–864.

    Article  CAS  PubMed  Google Scholar 

  2. Lagos-Quintana, M., Rauhut, R., Lendlecker, W., and Tuschl, T. (2001) Identification of novel genes coding for small expressed RNAs. Science 294, 853–858.

    Article  CAS  PubMed  Google Scholar 

  3. Lee, R. C., Feinbaum, R. L., and Ambros, V. (1993) The C. elegans heterochronic gene lin-4 encode small RNAs with antisense complementarity to lin-14. Cell 75, 843–854.

    Article  CAS  PubMed  Google Scholar 

  4. Slack, F. J., Basson, M., Liu, Z., Ambros, V., Horvitz, H. R., and Ruvkun, G. (2000) The lin-41 RBCC gene acts in the C. elegans heterochronic pathway between the let-7 regulatory RNA and the LIN-29 transcription factor. Mol. Cell 5, 659–669.

    Article  CAS  PubMed  Google Scholar 

  5. Largos-Quintana, M., Rauhut, R., Meyer, J., Borkhardt, A., and Tuschl, T. (2003) New microRNAs from mouse and human. RNA 9, 175–179.

    Article  Google Scholar 

  6. Bartel, D. P. (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116,281–297.

    Article  CAS  PubMed  Google Scholar 

  7. Tomari, Y. and Zamore, P. D. (2005) Perspective: machines for RNAi. Genes Dev. 19, 517–529.

    Article  CAS  PubMed  Google Scholar 

  8. Lee, Y., Kim, M., Han, J., et al. (2004) MicroRNA genes are transcribed by RNA polymerase II. EMBO J. 23, 4051–4060.

    Article  CAS  PubMed  Google Scholar 

  9. Lee, Y., Ahn, C., Han, J., et al. (2003) The nuclear RNase III Drosha initiates microRNA processing. Nature 425, 415–419.

    Article  CAS  PubMed  Google Scholar 

  10. Gregory, R. I., Yan, K., Amuthan, G., et al. (2004) The microprocessor complex mediates the genesis of microRNAs. Nature 432, 235–240.

    Article  CAS  PubMed  Google Scholar 

  11. Lund, E., Guttinger, S., Calado, A., Dahlberg, J. E., and Kutay, U. (2003) Nuclear export of microRNA precursors. Science 303, 95–98.

    Article  PubMed  Google Scholar 

  12. Hutvágner, G., McLachlan, J., Pasquinelli, A. E., Balint, E., Tuschl, T., and Zamore, P. D.(2001) A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA. Science 293, 834–838.

    Article  PubMed  Google Scholar 

  13. Cullen, B. R. (2004) Transcription and processing of human microRNA precursors. Mol.Cell 16, 861–865.

    Article  CAS  PubMed  Google Scholar 

  14. Zhang, H., Kolb, F., Jaskiewicz, L., Westhof, E., and Filipowicz, W. (2004) Single processing center models for human Dicer and bacterial RNase III. Cell 118, 57–68.

    Google Scholar 

  15. Hutvágner, G. and Zamore, P. D. (2002) A microRNA in a multiple-turnover RNAi enzyme complex. Science 297, 2056–2060.

    Article  PubMed  Google Scholar 

  16. Ketting, R. F., Fischer, S. E., Bernstein, E., Sijen, T., Hannon, G. J., and Plasterk, R. H. (2001) Dicer functions in RNA interference and in synthesis of small RNA involved in developmental timing in C. elegans. Genes Dev. 15, 2654–2659.

    Article  CAS  PubMed  Google Scholar 

  17. Khvorova, A., Reynolds, A., and Jayasena, S. D. (2003) Functional siRNAs and miRNAs exhibit strand bias. Cell 115, 209–216.

    Article  CAS  PubMed  Google Scholar 

  18. Schwarz, D. S., Hutvágner, G., Du, T., Xu, Z., Aronin, N., and Zamore, P. D. (2003) Asymmetry in the assembly of the RNAi enzyme complex. Cell 115, 199–208.

    Article  CAS  PubMed  Google Scholar 

  19. Krol, J. and Krzyzosiak, W. J. (2004) Structural aspects of microRNA biogenesis. IUBMB Life 56, 95–100.

    Article  CAS  PubMed  Google Scholar 

  20. Zeng, Y. and Cullen, B. R. (2003) Sequence requirements for microRNA processing and function in human cells. RNA 9, 112–123.

    Article  CAS  PubMed  Google Scholar 

  21. Zuker, M. (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res. 31, 3406–3415.

    Article  CAS  PubMed  Google Scholar 

  22. Krol, J., Sobczak, K., Wilczynska, U., et al. (2004) Structural features of microRNA precursors and their relevance to miRNA biogenesis and siRNA/shRNA design. J. Biol. Chem. 279, 42,230–42,239.

    Article  CAS  PubMed  Google Scholar 

  23. Krzyzosiak, W. J., Napierala, M., and Drozdz, M. (1999) RNA structure modules with trinucleotide repeat motifs. In: RNA Biochemistry and Biotechnology (Barciszewski, J. and Clark, B. F. C., eds.), Kluwer Academic Publishers Dordrecht, pp. 303–314.

    Google Scholar 

  24. Krzyzosiak, W. J., Denman, R., Nurse, K., et al. (1987) In vitro synthesis of 16S ribosomal RNA containing single base changes and assembly into a functional 30S ribosome. Biochemistry 26, 2353–2364.

    Article  CAS  PubMed  Google Scholar 

  25. Gaur, R. K., Hanne, A., and Krupp, G. (2004) Combination of chemical and enzymatic RNA synthesis. Methods Mol. Biol. 252, 9–17.

    CAS  PubMed  Google Scholar 

  26. Lee S. S. and Kang, C. (1993) Two base pairs at-9 and-8 distinguish between the bacteriophage T7 and SP6 promoters. J. Biol. Chem. 268, 19,299–19,304.

    CAS  PubMed  Google Scholar 

  27. Shin, I., Kim, J., Cantor, C., and Kang, C. (2000) Effect of saturation mutagenesis of the phage SP6 promoter on transcription activity, presented by activity logos. Proc. Natl. Acad. Sci. USA. 97, 3890–3895.

    Article  CAS  PubMed  Google Scholar 

  28. Ehresmann, C., Baudin, F., Mougel, M., Romby, P., Ebel, J. P., and Ehresmann, B. (1987) Probing the structure of RNAs in solution. Nucleic Acids Res. 15, 9109–9128.

    Article  CAS  PubMed  Google Scholar 

  29. Giege, R., Helm, M., and Florentz, C. (2001) Classical and novel chemical tools for RNA structure probing. In: RNA (Soll, D., Nishimura, S., and Moore, P. B., eds.), Elsevier Sciences Oxford, pp. 71–89.

    Chapter  Google Scholar 

  30. Knapp, G. (1989) Enzymatic approaches to probing of RNA secondary and tertiary structure. Methods Enzymol. 180, 192–212.

    Article  CAS  PubMed  Google Scholar 

  31. Napierala, M. and Krzyzosiak, W. J. (1997) CUG repeats present in myotonin kinase RNA form metastable “slippery” hairpins. J. Biol. Chem. 272, 31,079–31,085.

    Article  CAS  PubMed  Google Scholar 

  32. Favorova, O. O., Fasiolo, F., Keith, G., Vassilenko, S. K., and Ebel, J. P. (1981) Partial digestion of tRNA—aminoacyl-tRNA synthetase complexes with cobra venom ribonuclease. Biochemistry 20, 1006–1011.

    Article  CAS  PubMed  Google Scholar 

  33. Lowman, H. B. and Draper, D. E. (1986) On the recognition of helical RNA by cobra venom V1 nuclease. J. Biol. Chem. 261, 5396–5403.

    CAS  PubMed  Google Scholar 

  34. Marciniec, T. Ciesiolka, J., Wrzesinski, J., and Krzyzosiak, W. J. (1989) Identification of the magnesium, europium and lead binding sites in E. coli and lupine tRNAPhe by specific metal ion-induced cleavages. FEBS Lett. 243, 293–298.

    Article  CAS  PubMed  Google Scholar 

  35. Ciesiolka, J., Wrzesinski, J., Gornicki, P., Podkowinski, J., and Krzyzosiak, W. J. (1989) Analysis of magnesium, europium and lead binding sites in methionine initiator and elongator tRNAs by specific metal-ion-induced cleavages. Eur. J. Biochem. 186, 71–77.

    Article  CAS  PubMed  Google Scholar 

  36. Wrzesinski, J., Michalowski, D., Ciesiolka, J., and Krzyzosiak, W. J. (1995) Specific RNA cleavages induced by manganese ions. FEBS Lett. 374, 62–68.

    Article  CAS  PubMed  Google Scholar 

  37. Streicher, B., Westhof, E., and Schroeder, R. (1996) The environment of two metal ions surrounding the splice site of a group I intron. EMBO J. vn15, 2556–2564.

    Google Scholar 

  38. Krzyzosiak, W. J., Marciniec, T., Wiewiorowski, M., Romby, P., Ebel, J. P., and Giege, R.(1988) Characterization of the lead(II)-induced cleavages in tRNAs in solution and effect of the Y-base removal in yeast tRNAPhe. Biochemistry 27, 5771–5777.

    Article  CAS  PubMed  Google Scholar 

  39. Ciesiolka, J., Michalowski, D., Wrzesinski, J., Krajewski, J., and Krzyzosiak, W. J. (1998) Patterns of cleavages induced by lead ions in defined RNA secondary structure motifs. J. Mol. Biol. 275, 211–220.

    Article  CAS  PubMed  Google Scholar 

  40. Gornicki, P., Baudin, F., Romby, P., et al. (1989) Use of lead(II) to probe the structure of large RNA’s. Conformation of the 3′ terminal domain of E. coli 16S rRNA and its involvement in building the tRNA binding sites. J. Biomol. Struct. Dyn. 6, 971–984.

    CAS  PubMed  Google Scholar 

  41. Michalowski, D., Wrzesinski, J., and Krzyzosiak, W. J. (1996) Cleavages induced by different metal ions in yeast tRNA(Phe) U59C60 mutants. Biochemistry 35, 10,727–10,734.

    Article  CAS  PubMed  Google Scholar 

  42. Brown, R. S., Hingerty, B. E., Dewan, J. C., and Klug, A. (1983) Pb(II)-catalysed cleavage of the sugar-phosphate backbone of yeast tRNAPhe-implications for lead toxicity and self-splicing RNA. Nature 303, 543–546.

    Article  CAS  PubMed  Google Scholar 

  43. Brown, R. S., Dewan, J. C., and Klug, A. (1985) Crystallographic and biochemical investigation of the lead (II)-catalyzed hydrolysis of yeast phenylalanine tRNA. Biochemistry 24, 4785–4801.

    Article  CAS  PubMed  Google Scholar 

  44. Pan, T., Long, G. M., and Uhlenbeck, O. C. (1993) Divalent metal ions in RNA folding and catalysis. In: The RNA World (Gesteland, R. F. and Atkins, J. F., eds.), Cold Spring Harbor Laboratory Press New York, pp. 271–302.

    Google Scholar 

  45. Pyle, A. M. (1996) Role of metal ions in ribozymes. In: Metal Ions in Biological Systems (Sigel, A. and Sigel, H., eds.), Marcel Dekker Basel, pp. 479–520.

    Google Scholar 

  46. Sobczak, K., de Mezer, M., Michlewski, G., Krol, J., and Krzyzosiak, W. J. (2003) RNA structure of trinucleotide repeats associated with human neurological diseases. Nucleic Acids Res. 31, 5469–5482.

    Article  CAS  PubMed  Google Scholar 

  47. Michlewski, G. and Krzyzosiak, W. J. (2004) Molecular architecture of CAG repeats in human disease related transcripts. J. Mol. Biol. 340, 665–679.

    Article  CAS  PubMed  Google Scholar 

  48. Sobczak, K. and Krzyzosiak, W. J. (2005) CAG repeats containing CAA interruptionsform branched hairpin structures in spinocerebellar ataxia type 2 transcripts. J. Biol. Chem. 280, 3898–3910.

    Article  CAS  PubMed  Google Scholar 

  49. Napierala, M., Michalowski, D., de Mezer, M., and Krzyzosiak, W. J. (2005) Facile FMR1 mRNA structure regulation by interruptions in CGG repeats. Nucleic Acids Res. 33, 451–463.

    Article  CAS  PubMed  Google Scholar 

  50. Sobczak, K. and Krzyzosiak, W. J. (2002) Structural determinants of BRCA1 translational regulation. J. Biol. Chem. 277, 17,349–17,358.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc.

About this protocol

Cite this protocol

Krol, J., Krzyzosiak, W.J. (2006). Structure Analysis of MicroRNA Precursors. In: Ying, SY. (eds) MicroRNA Protocols. Methods in Molecular Biology™, vol 342. Humana Press. https://doi.org/10.1385/1-59745-123-1:19

Download citation

  • DOI: https://doi.org/10.1385/1-59745-123-1:19

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-581-1

  • Online ISBN: 978-1-59745-123-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics