Skip to main content

Design and Synthesis of β-Peptides With Biological Activity

  • Protocol

Part of the book series: Methods in Molecular Biology ((MIMB,volume 340))

Abstract

β-Peptides have been used as a platform for developing bioactive compounds with various types of bioactivity such as antimicrobial activity, cholesterol absorption inhibition, somatostatin receptor agonist, and hDM2 inhibition. These bioactive β-peptides have been designed based on bioactive a-peptides. Three main strategies have been used to design bioactive β-peptides: direct conversion of a-peptide sequences into β-peptide sequences, placement of side chains to provide desirable distribution of physicochemical properties, and the grafting of proteinaceous side chains critical for bioactivity onto β-peptide structures. This chapter briefly discusses the various strategies employed to design bioactive β-peptides, followed by protocols for the synthesis of N-α-fluorenylmethyloxycarbonyl (Fmoc)-protected β3-amino acids from Fmoc-protected α-amino acids, and synthesis of β-peptides by solid phase methods using Fmoc-based chemistry.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Bemis, G. W. and Murcko, M. A. (1996) The properties of known drugs. J. Med. Chem. 39, 2887–2893.

    Article  PubMed  CAS  Google Scholar 

  2. Bemis, G. W. and Murcko, M. A. (1999) Properties of known drugs. 2. Sidechains. J. Med. Chem. 42, 5095–5099.

    Article  PubMed  CAS  Google Scholar 

  3. Falciani, C., Lozzi, L., Pini, A., and Bracci, L. (2005) Bioactive peptides from libraries. Chem. Biol. 12, 417–426.

    Article  PubMed  CAS  Google Scholar 

  4. Seebach, D. and Matthews, J. L. (1997) β-Peptides: a surprise at every turn. Chem. Commun. 2015–2022.

    Google Scholar 

  5. Gellman, S. H. (1998) Foldamers: a manifesto. Acc. Chem. Res. 31, 173–180.

    Article  CAS  Google Scholar 

  6. Cheng, R. P., Gellman, S. H., and DeGrado, W. F. (2001) β-peptides: from structure to function. Chem. Rev. 101, 3219–3232.

    Article  PubMed  CAS  Google Scholar 

  7. Appella, D. H., Christianson, L. A., Karle, I. L., Powell, D. R., and Gellman, S. H. (1996) β-Peptide foldamers: robust helix formation in a new family of β-amino acid oligomers. J. Am. Chem. Soc. 118, 13,071–13,072.

    Article  CAS  Google Scholar 

  8. Seebach, D., Ciceri, P. E., Overhand, M., Juan, B., Rigo, D., Oberer, L., et al. (1996) Probing the helical secondary structure of short-chain β-peptides. Helv. Chim. Acta 79, 2043–2066.

    Article  CAS  Google Scholar 

  9. Daura, K. X. G., Schaefer, H., Juan, B., Seebach, D., and van Gunsteren, W. F. (2001) The β-peptide hairpin in solution: conformational study of a β-hexapeptide in methanol by NMR spectroscopy and MD simulation. J. Am. Chem. Soc. 123, 2393–2404.

    Article  PubMed  CAS  Google Scholar 

  10. Langenhan, J. M., Guzei, I. A., and Gellman, S. H. (2003) Parallel sheet secondary structure in β-peptides. Angew. Chem. Int. Ed. Engl. 42, 2402–2405.

    Article  PubMed  CAS  Google Scholar 

  11. Wiegand, H., Wirz, B., Schweitzer, A., Camenisch, G. P., Perez, M. I. R., Gross, G., et al. (2002) The outstanding metabolic stability of a C14-labeled β-nonapeptide in rats—in vitro and in vivo pharmacokinetic studies. Biopharm. Drug Dispos. 23, 251–262.

    Article  PubMed  CAS  Google Scholar 

  12. Frackenpohl, J., Arvidsson, P. I., Schreiber, J. V., and Seebach, D. (2001) The outstanding biological stability of β-and γ-peptides toward proteolytic enzymes: an in vitro investigation with fifteen peptidases. ChemBiochem 2, 445–455.

    Article  PubMed  CAS  Google Scholar 

  13. Seebach, D., Abele, S., Schreiber, J. V., Martinoni, B., Nussbaum, A. K., Schild, H., et al. (1998) Biological and pharmacokinetic studies with β-peptides. Chimia 52, 734–739.

    CAS  Google Scholar 

  14. Rueping, M., Mahajan, Y., Sauer, M., and Seebach, D. (2002) Cellular uptake studies with β-peptides. ChemBiochem 3, 257–259.

    Article  PubMed  CAS  Google Scholar 

  15. Umezawa, N., Gelman, M. A., Haigis, M. C., Raines, R. T., and Gellman, S. H. (2002) Translocation of a β-peptide across cell membranes. J. Am. Chem. Soc. 124, 368–369.

    Article  PubMed  CAS  Google Scholar 

  16. Potocky, T. B., Menon, A. K., and Gellman, S. H. (2003) Cytoplasmic and nuclear delivery of a TAT-derived peptide and a β-peptide after endocytic uptake into HeLa cells. J. Biol. Chem. 278, 50,188–50,194.

    Article  PubMed  CAS  Google Scholar 

  17. Potocky, T. B., Menon, A. K., and Gellman, S. H. (2005) Effects of conformational stability and geometry of guanidinium display on cell entry by β-peptides. J. Am. Chem. Soc. 127, 3686–3687.

    Article  PubMed  CAS  Google Scholar 

  18. Hintermann, T. and Seebach, D. (1997) The biological stability of β-peptides: no interactions between α-and β-peptidic structures. Chimia 51, 244–247.

    CAS  Google Scholar 

  19. Schreiber, J. V., Frackenpohl, J., Moser, F., Fleischmann, T., Kohler, H. P. E., and Seebach, D. (2002) On the biodegradation of β-peptides. ChemBiochem 3, 424–432.

    Article  PubMed  CAS  Google Scholar 

  20. Fauchere, J. L. and Thurieau, C. (1992) Evaluation of the stability of peptides and pseudopeptides as a tool in peptide drug design. Adv. Drug Res. 23, 127–159.

    CAS  Google Scholar 

  21. Appella, D. H., Christianson, L. A., Klein, D. A., Powell, D. R., Huang, X. L., Barchi, J. J., et al. (1997) Residue-based control of helix shape in β-peptide oligomers. Nature 387, 381–384.

    Article  PubMed  CAS  Google Scholar 

  22. Seebach, D., Overhand, M., Kuhnle, F. N. M., Martinoni, B., Oberer, L., Hommel, U., et al. (1996) β-Peptides: synthesis by Arndt-Eistert homologation with concomitant peptide coupling. Structure determination by NMR and CD spectroscopy and by x-ray crystallography. Helical secondary structure of a β-hexapeptide in solution and its stability towards pepsin. Helv. Chim. Acta 79, 913–941.

    Article  CAS  Google Scholar 

  23. Cheng, R. P. and DeGrado, W. F. (2001) De novo design of a monomeric helical β-peptide stabilized by electrostatic interactions. J. Am. Chem. Soc. 123, 5162–5163.

    Article  PubMed  CAS  Google Scholar 

  24. Arvidsson, P. I., Reuping, M., and Seebach, D. (2001) Design, machine synthesis, and NMR solution structure of a β-heptapeptide forming a salt bridge stabilised 314-helix in methanol and in water. Chem. Commun. 649–650.

    Google Scholar 

  25. Raguse, T. L., Lai, J. R., and Gellman, S. H. (2002) Evidence that the β-peptide 14-helix is stabilized by β3-residues with side-chain branching adjacent to the β-carbon atom. Helv. Chim. Acta 85, 4154–4164.

    Article  CAS  Google Scholar 

  26. Kritzer, J. A., Tirado-Rives, J., Hart, S. A., Lear, J. D., Jorgensen, W. L., and Schepartz, A. (2005) Relationship between side chain structure and 14-helix stability of β3-peptides in water. J. Am. Chem. Soc. 127, 167–178.

    Article  PubMed  CAS  Google Scholar 

  27. Hart, S. A., Bahadoor, A. B. F., Matthews, E. E., Qiu, X. Y. J., and Schepartz, A. (2003) Helix macrodipole control of β3-peptide 14-helix stability in water. J. Am. Chem. Soc. 125, 4022–4023.

    Article  PubMed  CAS  Google Scholar 

  28. Armstrong, K. M. and Baldwin, R. L. (1993) Charged histidine affects a-helix stability at all positions in the helix by interacting with the backbone charges. Proc. Natl. Acad. Sci. USA 90, 11,337–11,340.

    Article  PubMed  CAS  Google Scholar 

  29. Guichard, G., Abele, S., and Seebach, D. (1998) Preparation of N-Fmoc-protected β2-and β3-amino acids and their use as building blocks for the solid phase synthesis of β-peptides. Helv. Chim. Acta 81, 187–206.

    Article  CAS  Google Scholar 

  30. Juaristi, E. (ed.). (1997) Enantioselective Synthesis of β-Amino Acids. Wiley-VCH, New York.

    Google Scholar 

  31. Lelais, G. and Seebach, D. (2004) β2-Amino acids—syntheses, occurrence in natural products, and components of β-peptides. Biopolymers 76, 206–243.

    Article  PubMed  CAS  Google Scholar 

  32. Juaristi, E., Escalente, J., Lamatsch, B., and Seebach, D. (1992) Enatioselective synthesis of β-amino acids. 2. preparation of the like stereoisomers of 2-methyland 2-benzyl-3-aminobutanoic acid. J. Org. Chem. 57, 2396–2398.

    Article  CAS  Google Scholar 

  33. Babu, V. V., Gopi, H. N., and Ananda, K. (1999) Homologation of a-amino acids to β-amino acids using Fmocamino acid pentafluorophenyl esters. J. Pept. Res. 53, 308–313.

    Article  PubMed  CAS  Google Scholar 

  34. Seebach, D., Rueping, M., Arvidsson, P., Kimmerlin, T., Micuch, P., Noti, C., et al. (2001) Linear, peptidase-resistant β23-di-and α/β3-tetrapeptide derivatives with nanomolar affinities to a human somatostatin receptor—preliminary communication. Helv. Chim. Acta 84, 3503–3510.

    Article  CAS  Google Scholar 

  35. Gademann, K., Ernst, M., Hoyer, D., and Seebach, D. (1999) Synthesis and biological evaluation of a cyclo-β-tetrapeptide as a somatostatin analogue. Angew. Chem. Int. Ed. Engl. 38, 1223–1226.

    Article  CAS  Google Scholar 

  36. Nunn, C., Rueping, M., Langenegger, D., Schuepbach, E., Kimmerlin, T., Micuch, P., et al. (2003) β23-di-and α/β3-tetrapeptide derivatives as potent agonists at somatostatin sst4 receptors. Naunyn. Schmiedebergs Arch. Pharmacol. 367, 95–103.

    Article  PubMed  CAS  Google Scholar 

  37. Gademann, K., Kimmerlin, T., Ernst, M., Seebach, D., and Hoyer, D. (2000) The cyclo-β-tetrapeptide (β-HPhe-β-HThr-β-HLys-β-HTrp): synthesis, NMR structure in methanol solution, and affinity for human somatostatin receptors. Helv. Chim. Acta 83, 16–33.

    Article  CAS  Google Scholar 

  38. Gademann, K., Kimmerlin, T., Hoyer, D., and Seebach, D. (2001) Peptide folding induces high and selective affinity of a linear and small β-peptide to the human somatostatin receptor 4. J. Med. Chem. 44, 2460–2468.

    Article  PubMed  CAS  Google Scholar 

  39. Gelman, M. A., Richter, S., Cao, H., Umezawa, N., Gellman, S. H., and Rana, T. M. (2003) Selective binding of TAR RNA by a tat-derived β-peptide. Org. Lett. 5, 3563–3565.

    Article  PubMed  CAS  Google Scholar 

  40. Epand, R. F., Raguse, T. L., Gellman, S. H., and Epand, R. M. (2004) Antimicrobial 14-helical β-peptides: potent bilayer disrupting agents. Biochemistry 43, 9527–35.

    Article  PubMed  CAS  Google Scholar 

  41. Epand, R. F., Umezawa, N., Porter, E. A., Gellman, S. H., and Epand, R. M. (2003) Interactions of the antimicrobial β-peptide β-17 with phospholipid vesicles differ from membrane interactions of magainins. Eur. J. Biochem. 270, 1240–1248.

    Article  PubMed  CAS  Google Scholar 

  42. Liu, D. H. and DeGrado, W. F. (2001) De novo design, synthesis, and characterization of antimicrobial β-peptides. J. Am. Chem. Soc. 123, 7553–7559.

    Article  PubMed  CAS  Google Scholar 

  43. Porter, E. A., Weisblum, B., and Gellman, S. H. (2002) Mimicry of host-defense peptides by unnatural oligomers: antimicrobial β-peptides. J. Am. Chem. Soc. 124, 7324–7330.

    Article  PubMed  CAS  Google Scholar 

  44. Raguse, T. L., Porter, E. A., Weisblum, B., and Gellman, S. H. (2002) Structureactivity studies of 14-helical antimicrobial β-peptides: probing the relationship between conformational stability and antimicrobial potency. J. Am. Chem. Soc. 124, 12,774–12,785.

    Article  PubMed  CAS  Google Scholar 

  45. Arvidsson, P. I., Ryder, N. S., Weiss, H. M., Gross, G., Kretz, O., Woessner, R., et al. (2003) Antibiotic and hemolytic activity of a β23 peptide capable of folding into a 12/10-helical secondary structure. ChemBiochem 4, 1345–1347.

    Article  PubMed  CAS  Google Scholar 

  46. Arvidsson, P. I., Ryder, N. S., Weiss, H. M., Hook, D. F., Escalente, J., and Seebach, D. (2005) Exploring the antibacterial and hemolytic activity of shorterand longer-chain β, α,β, and γ-peptides, and of β-peptides from β2-3-Aza-and β3-2-methylidene-amino acids bearing proteinogenic side chains—a survey. Chem. Biodiv. 2, 401–420.

    Article  CAS  Google Scholar 

  47. Hamuro, Y., Schneider, J. P., and DeGrado, W. F. (1999) De novo design of antibacterial β-peptides. J. Am. Chem. Soc. 121, 12,200–12,201.

    Article  CAS  Google Scholar 

  48. Werder, M., Hauser, H., Abele, S., and Seebach, D. (1999) β-Peptides as inhibitors of small-intestinal cholesterol and fat absorption. Helv. Chim. Acta 82, 1774–1783.

    Article  CAS  Google Scholar 

  49. Kritzer, J. A., Lear, J. D., Hodsdon, M. E., and Schepartz, A. (2004) Helical β-peptide inhibitors of the p53-hDM2 interaction. J. Am. Chem. Soc. 126, 9468–9469.

    Article  PubMed  CAS  Google Scholar 

  50. Kritzer, J. A., Stephens, O. M., Guarracino, D. A., Reznik, S. K., and Schepartz, A. (2005) β-peptides as inhibitors of protein-protein interactions. Bioorg. Med. Chem. 13, 11–16.

    Article  PubMed  CAS  Google Scholar 

  51. White, P., Dorner, B., and Steinauer, R. (eds.) Synthesis notes, in Novabiochem 2004–2005 catalog, pp. 1.1–6.4.

    Google Scholar 

  52. Fields, G. B. and Noble, R. L. (1990) Solid-phase peptide synthesis utilizing 9-flurorenylmethoxycarbonyl amino acids. Int. J. Pept. Protein Res. 35, 161–214.

    Article  PubMed  CAS  Google Scholar 

  53. Leggio, A., Liguori, A., Procopio, A., and Sindona, G. (1997) Convenient and stereospecific homologation of N-fluorenylmethoxycarbonyl-α-amino acids to their β-homologs. J. Chem. Soc., Perkin Trans. 13, 1969–1971.

    Article  Google Scholar 

  54. Schreiber, J. V. and Seebach, D. (2000) Solid-phase synthesis of a β-dodecapeptide with seven functionalized side chains and CD spectroscopic evidence for a dramatic structual switch when going from water to methanol solution. Helv. Chim. Acta 83, 3139–3152.

    Article  CAS  Google Scholar 

  55. Carpino, L. A. (1993) 1-Hydroxy-7-azabenzotriazole. An efficient peptide coupling additive. J. Am. Chem. Soc. 115, 4397–4398.

    Article  CAS  Google Scholar 

  56. Carpino, L. A., El-Faham, A., Minor, C. A., and Albericio, F. (1994) Advantageous applications of azabenzotriazole (triazolopyridine)-based coupling reagents to solid phase peptide synthesis. J. Chem. Soc. Chem. Commun. 201–203.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc.

About this protocol

Cite this protocol

Koyack, M.J., Cheng, R.P. (2006). Design and Synthesis of β-Peptides With Biological Activity. In: Guerois, R., de la Paz, M.L. (eds) Protein Design. Methods in Molecular Biology, vol 340. Humana Press. https://doi.org/10.1385/1-59745-116-9:95

Download citation

  • DOI: https://doi.org/10.1385/1-59745-116-9:95

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-585-9

  • Online ISBN: 978-1-59745-116-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics