Non-Protein Amino Acids in the Design of Secondary Structure Scaffolds

  • Radhakrishnan Mahalakshmi
  • Padmanabhan Balaram
Part of the Methods in Molecular Biology book series (MIMB, volume 340)

Abstract

The use of stereochemically constrained amino acids permits the design of short peptides as models for protein secondary structures. Amino acid residues that are restrained to a limited range of backbone torsion angles (ϕ-ψ) may be used as folding nuclei in the design of helices and β-hairpins. α-Amino-isobutyric acid (Aib) and related Cαα dialkylated residues are strong promoters of helix formation, as exemplified by a large body of experimentally determined structures of helical peptides. DPro-Xxx sequences strongly favor type II’ turn conformations, which serve to nucleate registered β-hairpin formation. Appropriately positioned DPro-Xxx segments may be used to nucleate the formation of multistranded antiparallel β-sheet structures. Mixed (α/β) secondary structures can be generated by linking rigid modules of helices and β-hairpins. The approach of using stereochemically constrained residues promotes folding by limiting the local structural space at specific residues. Several aspects of secondary structure design are outlined in this chapter, along with commonly used methods of spectroscopic characterization.

Key Words

Peptide design helical peptides peptide hairpins D-amino acids peptide scaffolds NMR of peptides peptide crystal structure 

References

  1. 1.
    Ramachandran, G. N., Ramakrishnan, C., and Sasisekharan, V. (1963) Stereochemistry of polypeptide chain configurations. J. Mol. Biol. 7, 95–99.PubMedCrossRefGoogle Scholar
  2. 2.
    Ramachandran, G. N. and Ramakrishnan, C. (1965) Stereochemical criteria for polypeptide and protein chain conformation. II. Allowed conformations for a pair of peptide units. Biophys. J. 5, 909–933.PubMedCrossRefGoogle Scholar
  3. 3.
    Ramachandran, G. N. and Sasisekharan, V. (1968) Conformation of polypeptides and proteins. Adv. Protein. Chem. 23, 283–438.PubMedCrossRefGoogle Scholar
  4. 4.
    Venkatraman, J., Shankaramma, S. C., and Balaram, P. (2001) Design of folded peptides. Chem. Rev. 101, 3131–3152.PubMedCrossRefGoogle Scholar
  5. 5.
    Prasad, B. V. V. and Balaram, P. (1984) The stereochemistry of peptides containing a-aminoisobutyric acid. CRC Crit. Rev. Biochem. 16, 307–384.PubMedCrossRefGoogle Scholar
  6. 6.
    Kaul, R. and Balaram, P. (1999) Stereochemical control of peptide folding. Bioorg. Med. Chem. 7, 105–117.PubMedCrossRefGoogle Scholar
  7. 7.
    Allen, F. H. (2002) The Cambridge Structural Database: a quarter of a million crystal structures and rising. Acta Crystallogr. B58, 380–388.Google Scholar
  8. 8.
    Aravinda, S., Shamala, N., Roy, R. S., and Balaram, P. (2003) Non-protein amino acids in peptide design. Proc. Indian Acad. Sci. (Chem. Sci.) 115, 373–400.CrossRefGoogle Scholar
  9. 9.
    Smith, J. A. and Pease, L. G. (1980) Reverse turns in peptides and proteins. CRC Crit. Rev. Biochem. 8, 315–399.PubMedCrossRefGoogle Scholar
  10. 10.
    Rose, G. D., Gierasch, L. M., and Smith, J. A. (1985) Turns in peptides and proteins. Adv. Protein Chem. 37, 1–109.PubMedCrossRefGoogle Scholar
  11. 11.
    Venkatachalam, C. M. (1968) Stereochemical criteria for polypeptides and proteins. V. Conformation of a system of three linked peptide units. Biopolymers 6, 1425–1436.PubMedCrossRefGoogle Scholar
  12. 12.
    Wilmot, C. M. and Thornton, J. M. (1988) Analysis and prediction of the different types of β-turn in proteins. J. Mol. Biol. 203, 221–232.PubMedCrossRefGoogle Scholar
  13. 13.
    Sibanda, B. L. and Thornton, J. M. (1985) β-hairpin families in globular proteins Nature 316, 170–174.PubMedCrossRefGoogle Scholar
  14. 14.
    Gunasekaran, K., Ramakrishnan, C., and Balaram, P. (1997) β-hairpins in proteins revisited: lessons for de novo design. Protein Eng. 10, 1131–1141.PubMedCrossRefGoogle Scholar
  15. 15.
    Richardson, J. S. and Richardson, D. C. (1989) Principles and patterns of protein conformation, in Prediction of Protein Structure and the Principles of Protein Conformation (Fasman, G. D., ed.), Plenum, New York, pp. 1–98.Google Scholar
  16. 16.
    Srinivasan, N., Anuradha, V. S., Ramakrishnan, C., Sowdhamini, R., and Balaram, P. (1994) Conformational characteristics of asparaginyl residues in proteins. Int. J. Peptide Protein Res. 44, 112–122.CrossRefGoogle Scholar
  17. 17.
    Stigers, K. D., Soth, M. J., and Nowick, J. S. (1999) Designed molecules that fold to mimic protein secondary structures. Curr. Opin. Chem. Biol. 3, 714–723.PubMedCrossRefGoogle Scholar
  18. 18.
    Toniolo, C., Bonora, G. M., Bavoso, A., Benedetti, E., di Blasio, B., Pavone, V., et al. (1983) Preferred conformations of peptides containing α,α-disubstituted α-amino acids. Biopolymers 22, 205–215.CrossRefGoogle Scholar
  19. 19.
    Karle, I. L. and Balaram, P. (1990) Structural characteristics of a-helical peptide molecules containing Aib residues. Biochemistry 29, 6747–6756.PubMedCrossRefGoogle Scholar
  20. 20.
    Karle, I. L., Flippen-Anderson, J. L., Uma, K., and Balaram, P. (1990) Apolar peptide models for conformational heterogeneity, hydration, and packing of polypeptide helices: crystal structure of hepta-and octapeptides containing α-aminoisobutyric acid. Proteins 7, 62–73.PubMedCrossRefGoogle Scholar
  21. 21.
    Karle, I. L., Flippen-Anderson, J. L., Uma, K., and Balaram, P. (1993) Unfolding of an α-helix in peptide crystals by solvation: conformational fragility in a heptapeptide. Biopolymers 33, 827–837.PubMedCrossRefGoogle Scholar
  22. 22.
    Datta, S., Kaul, R., Rao, R. B., Shamala, N., and Balaram, P. (1997) Stereochemistry of linking segments in the design of helix-helix motifs in peptides. Crystallographic comparison of a glycyl-dipropylglycyl-glycyl segment in a tripeptide and a 14-residue peptide. J. Chem. Soc. Perkin Trans. 2, 1659–1664.Google Scholar
  23. 23.
    Karle, I. L., Flippen-Anderson, J. L., Uma, K., and Balaram, P. (1993) Peptide mimics for structural features in proteins. Crystal structures of three heptapeptide helices with a C-terminal 6→1 hydrogen bond. Int. J. Peptide Protein Res. 42, 401–410.CrossRefGoogle Scholar
  24. 24.
    Datta, S., Shamala, N., Banerjee, A., Pramanik, A., Bhattacharjya, S., and Balaram, P. (1997) Characterization of helix-terminating Schellman motifs in peptides. Crystal structure and nuclear Overhauser effect analysis of a synthetic hexapeptide helix. J. Am. Chem. Soc. 119, 9246–9251.CrossRefGoogle Scholar
  25. 25.
    Babu, M. M., Singh, S. K., and Balaram, P. (2002) A C-H-O hydrogen bond stabilized polypeptide chain reversal motif at the C-terminus helices in proteins. J. Mol. Biol. 322, 871–880.CrossRefGoogle Scholar
  26. 26.
    Banerjee, A., Raghothama, S., Karle, I. L., and Balaram, P. (1996) Ambidextrous molecules: cylindrical peptide structures formed by fusing left-and right-handed helices. Biopolymers 39, 279–285.PubMedCrossRefGoogle Scholar
  27. 27.
    Karle, I. L. (2001) Controls exerted by the Aib residue: helix formation and helix reversal. Biopolymers (Pept. Sci.) 60, 351–365.CrossRefGoogle Scholar
  28. 28.
    Aravinda, S., Shamala, N., Desiraju, S., and Balaram, P. (2002) A right handed peptide helix containing a central double D-amino acid segment. Chem. Commun. 2454–2455.Google Scholar
  29. 29.
    Karle, I. L., Gopi, H. N., and Balaram, P. (2003) Crystal structure of a hydrophobic 19-residue peptide helix containing three centrally located D amino acids. Proc. Natl. Acad. Sci. USA 100, 13946–13951.PubMedCrossRefGoogle Scholar
  30. 30.
    Awasthi, S. K., Raghothama, S., and Balaram, P. (1995) A designed β-hairpin peptide. Biochem. Biophys. Res. Commun. 216, 375–381.PubMedCrossRefGoogle Scholar
  31. 31.
    Karle, I. L., Awasthi, S. K., and Balaram, P. (1996) A designed β-hairpin peptide in crystals. Proc. Natl. Acad. Sci. USA 93, 8189–8193.PubMedCrossRefGoogle Scholar
  32. 32.
    Raghothama, S., Awasthi, S. K., and Balaram, P. (1998) β-hairpin nucleation by Pro-Gly β-turns. Comparison of D-Pro-Gly and L-Pro-Gly sequences in apolar octapeptides. J. Chem. Soc. Perkin Trans. 2, 137–143.Google Scholar
  33. 33.
    Das, C., Naganagowda, G. A., Karle, I. L., and Balaram, P. (2001) Designed β-hairpin peptides with defined tight turn stereochemistry. Biopolymers 58, 335–346.PubMedCrossRefGoogle Scholar
  34. 34.
    Haque, T. S. and Gellman, S. H. (1997) Insights on β-hairpin stability in aqueous solution from peptides with enforced type I’ and type II’ β-turns. J. Am. Chem. Soc. 119, 2303–2304.CrossRefGoogle Scholar
  35. 35.
    Espinosa, J. F. and Gellman, S. H. (2000) A designed β-hairpin containing a natural hydrophobic cluster. Angew. Chem. Int. Ed. Engl. 39, 2330–33.PubMedCrossRefGoogle Scholar
  36. 36.
    Stanger, H. E. and Gellman, S. H. (1998) Rules for antiparallel β-sheet design: D-Pro-Gly is superior to L-Asn-Gly for β-hairpin nucleation. J. Am. Chem. Soc. 120, 4236–4237.CrossRefGoogle Scholar
  37. 37.
    Aravinda, S., Harini, V. V., Shamala, N., Das, C., and Balaram, P. (2004) Structure and assembly of designed β-hairpin peptides in crystals as models for β-sheet aggregation. Biochemistry 43, 1832–1846.PubMedCrossRefGoogle Scholar
  38. 38.
    Gellman, S. H. (1998) Minimal model systems for β-sheet secondary structure in proteins. Curr. Opin. Chem. Biol. 2, 717–725.PubMedCrossRefGoogle Scholar
  39. 39.
    Blanco, F., Ramirez-Alvarado, M., and Serrano, L. (1998) Formation and stability of β-hairpin structures in polypeptides. Curr. Opin. Struct. Biol. 8, 107–111.PubMedCrossRefGoogle Scholar
  40. 40.
    Aravinda, S., Shamala, N., Rai R., Gopi, H. N., and Balaram, P. (2002) A crystalline β-hairpin peptide nucleated by a type I’ Aib-D-Ala β-turn: evidence for crossstrand aromatic interactions. Angew. Chem. Int. Ed. Engl. 41, 3863–3865.PubMedCrossRefGoogle Scholar
  41. 41.
    Harini, V. V., Aravinda, S., Rai, R., Shamala, N., and Balaram, P. (2005) Molecular conformation and packing of peptide β-hairpins in crystals. Structures of two synthetic octapeptides containing 1-aminocycloalkane-1-carboxylic acid residues at the i+2 position of the β-turn. Chem. Eur. J. In press.Google Scholar
  42. 42.
    Das, C., Raghothama, S., and Balaram, P. (1998) A designed three stranded β-sheet peptide. J. Am. Chem. Soc. 120, 5812–5813.CrossRefGoogle Scholar
  43. 43.
    Das, C., Raghothama, S., and Balaram, P. (1999) A four stranded β-sheet structure in a designed synthetic polypeptide. Chem. Commun. 967–968.Google Scholar
  44. 44.
    Venkatraman, J., Naganagowda, G. A., Sudha, R., and Balaram, P. (2001) De novo design of a five-stranded β-sheet anchoring a metal-ion binding site. Chem. Commun. 2660–2661.Google Scholar
  45. 45.
    Venkatraman, J., Naganagowda, G. A., and Balaram, P. (2002) Design and construction of an open multistranded β-sheet polypeptide stabilized by a disulfide bridge. J. Am. Chem. Soc. 124, 4987–4994.PubMedCrossRefGoogle Scholar
  46. 46.
    Karle, I. L., Das, C., and Balaram, P. (2000) De novo protein design: crystallographic characterization of a synthetic peptide containing independent helical and hairpin domains. Proc. Natl. Acad. Sci. USA 97, 3034–3037.PubMedCrossRefGoogle Scholar
  47. 47.
    Wallimann, P., Kennedy. R. J., Miller, J. S., Shalongo. W., and Kemp, D. S. (2003) Dual wavelength parametric test of two-state models for circular dichroism spectra of helical polypeptides: anomalous dichroic properties of alanine-rich peptides. J. Am. Chem. Soc. 125, 1203–1220.PubMedCrossRefGoogle Scholar
  48. 48.
    Aravinda, S., Datta, S., Shamala, N., and Balaram, P. (2004) Hydrogen-bond lengths in polypeptide helices: no evidence for short hydrogen bonds. Angew. Chem. Int. Ed. Engl. 43, 6728–6731.PubMedCrossRefGoogle Scholar
  49. 49.
    Mahalakshmi, R., Raghothama, S., and Balaram, P. (2006) NMR analysis of aromatic interactions in designed peptide β-haripins. J. Am. Chem. Soc. 128, 1125–1138.PubMedCrossRefGoogle Scholar
  50. 50.
    Bunkoczi, G., Vertesy, L., and Sheldrick, G. M. (2005) The antiviral antibiotic Feglymycin: first direct-methods solution of a 1000+ equal-atom structure. Angew. Chem. Int. Ed. Engl. 44, 1340–1342.PubMedCrossRefGoogle Scholar
  51. 51.
    Konnert, J., Karle, J., Karle, I. L., Uma, K., and Balaram, P. (1999) Isomorphous replacement combined with anomalous dispersion in the linear equations: applications to a crystal containing four nonapeptide conformers. Acta Crystallogr. D55, 448–457.Google Scholar

Copyright information

© Humana Press Inc. 2006

Authors and Affiliations

  • Radhakrishnan Mahalakshmi
    • 1
  • Padmanabhan Balaram
    • 1
  1. 1.Molecular Biophysics UnitIndian Institute of ScienceBangaloreIndia

Personalised recommendations