Skip to main content

Fluorescent Energy Transfer Readout of an Aptazyme-Based Biosensor

  • Protocol
Book cover Fluorescent Energy Transfer Nucleic Acid Probes

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 335))

Abstract

Biosensors are devices that amplify signals generated from the specific interaction between a receptor and an analyte of interest. RNA structural motifs called aptamers have recently been discovered as receptor components for biosensors owing to the ease with which they can be evolved in vitro to bind a variety of ligands with high specificity and affinity. By coupling an aptamer as allosteric control element to a catalytic RNA such as the hammerhead ribozyme, ligand binding is transduced into a catalytic event. We have made use of fluorescence resonance energy transfer (FRET) to further amplify ligand induced catalysis into an easily detectable fluorescence signal. This chapter reviews in detail the methods and protocols to prepare a theophylline specific aptazyme and to label its substrate with fluorophores. We also include detailed protocols to characterize by FRET the binding affinity of the target, theophylline, as well as the external substrate to the aptazyme. The chapter should therefore facilitate the implementation of RNA-based biosensor components for other analytes of interest.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hendeles, L. and Weinberger, M. (1983) Theophylline. A &“state of the art&” review. Pharmacotherapy 3, 2–44.

    PubMed  CAS  Google Scholar 

  2. Wilson, D. S. and Szostak, J. W. (1999) In vitro selection of functional nucleic acids. Annu. Rev. Biochem. 68, 611–647.

    Article  PubMed  CAS  Google Scholar 

  3. Hoffman, D., Hesselberth, J., and Ellington, A. D. (2001) Switching nucleic acids for antibodies. Nat. Biotechnol. 19, 313–314.

    Article  PubMed  CAS  Google Scholar 

  4. Breaker, R. R. (2002) Engineered allosteric ribozymes as biosensor components. Curr. Opin. Biotechnol. 13, 31–39.

    Article  PubMed  CAS  Google Scholar 

  5. Silverman, S. K. (2003) Rube Goldberg goes (ribo)nuclear? Molecular switches and sensors made from RNA. RNA 9, 377–383.

    Article  PubMed  CAS  Google Scholar 

  6. Winkler, W. C., Nahvi, A., Roth, A., Collins, J. A., and Breaker, R. R. (2004) Control of gene expression by a natural metabolite-responsive ribozyme. Nature 428, 281–286.

    Article  PubMed  CAS  Google Scholar 

  7. Soukup, G. A. and Breaker, R. R. (1999) Design of allosteric hammerhead ribozymes activated by ligand-induced structure stabilization. Structure. Fold. Des. 7, 783–791.

    Article  PubMed  CAS  Google Scholar 

  8. Soukup, G. A. and Breaker, R. R. (1999) Engineering precision RNA molecular switches. Proc. Natl. Acad. Sci. USA 96, 3584–3589.

    Article  PubMed  CAS  Google Scholar 

  9. Soukup, G. A. and Breaker, R. R. (1999) Nucleic acid molecular switches. Trends Biotechnol. 17, 469–476.

    Article  PubMed  CAS  Google Scholar 

  10. Soukup, G. A. and Breaker, R. R. (2000) Allosteric nucleic acid catalysts. Curr. Opin. Struct. Biol. 10, 318–325.

    Article  PubMed  CAS  Google Scholar 

  11. Soukup, G. A., DeRose, E. C., Koizumi, M., and Breaker, R. R. (2001) Generating new ligand-binding RNAs by affinity maturation and disintegration of allosteric ribozymes. RNA 7, 524–536.

    Article  PubMed  CAS  Google Scholar 

  12. Soukup, G. A., Emilsson, G. A., and Breaker, R. R. (2000) Altering molecular recognition of RNA aptamers by allosteric selection. J. Mol. Biol. 298, 623–632.

    Article  PubMed  CAS  Google Scholar 

  13. Zimmermann, G. R., Wick, C. L., Shields, T. P., Jenison, R. D., and Pardi, A. (2000) Molecular interactions and metal binding in the theophylline-binding core of an RNA aptamer. RNA 6, 659–667.

    Article  PubMed  CAS  Google Scholar 

  14. Wedekind, J. E. and McKay, D. B. (1998) Crystallographic structures of the hammerhead ribozyme: relationship to ribozyme folding and catalysis. Annu. Rev. Biophys. Biomol. Struct. 27, 475–502.

    Article  PubMed  CAS  Google Scholar 

  15. Sekella, P. T., Rueda, D., and Walter, N. G. (2002) A biosensor for theophylline based on fluorescence detection of ligand-induced hammerhead ribozyme cleavage. RNA 8, 1242–1252.

    Article  PubMed  CAS  Google Scholar 

  16. Walter, N. G. (2001) Structural dynamics of catalytic RNA highlighted by fluorescence resonance energy transfer. Methods 25, 19–30.

    Article  PubMed  CAS  Google Scholar 

  17. Walter, N. G., Harris, D. A., Pereira, M. J., and Rueda, D. (2001) In the fluorescent spotlight global and local conformational changes of small catalytic RNAs. Biopolymers 61, 224–242.

    Article  PubMed  Google Scholar 

  18. Pereira, M. J., Harris, D. A., Rueda, D., and Walter, N. G. (2002) Reaction pathway of the trans-acting hepatitis delta virus ribozyme a conformational change accompanies catalysis. Biochem. 41, 730–740.

    Article  CAS  Google Scholar 

  19. Harris, D. A., Rueda, D., and Walter, N. G. (2002) Local conformational changes in the catalytic core of the trans-acting hepatitis delta virus ribozyme accompany catalysis. Biochem. 41, 12,051–12,061.

    Article  CAS  Google Scholar 

  20. Zhuang, X., Kim, H., Pereira, M. J., Babcock, H. P., Walter, N. G., and Chu, S. (2002) Correlating structural dynamics and function in single ribozyme molecules. Science 296, 1473–1476.

    Article  PubMed  CAS  Google Scholar 

  21. Bokinsky, G., Rueda, D., Misra, V. K., et al. (2003) Single-molecule transitionstate analysis of RNA folding. Proc. Natl. Acad. Sci. USA 100, 9302–9307.

    Article  PubMed  CAS  Google Scholar 

  22. Rueda, D., Wick, K., McDowell, S. E., and Walter, N. G. (2003) Diffusely bound Mg2+ ions slightly reorient stems I and II of the hammerhead ribozyme to increase the probability of formation of the catalytic core. Biochem. 42, 9924–9936.

    Article  CAS  Google Scholar 

  23. Rueda, D., Bokinsky, G., Rhodes, M. M., Rust, M. J., Zhuang, X., and Walter, N. G. (2004) Single-molecule enzymology of RNA essential functional groups impact catalysis from a distance. Proc. Natl. Acad. Sci. USA 101, 10,066–10,071.

    Article  PubMed  CAS  Google Scholar 

  24. Grodberg, J. and Dunn, J. J. (1988) ompT encodes the Escherichia coli outer membrane protease that cleaves T7 RNA polymerase during purification. J. Bacteriol. 170, 1245–1253.

    PubMed  CAS  Google Scholar 

  25. He, B., Rong, M., Lyakhov, D., et al. (1997) Rapid mutagenesis and purification of phage RNA polymerases. Protein Expr. Purif. 9, 142–151.

    Article  PubMed  CAS  Google Scholar 

  26. Walter, N. G. and Burke, J. M. (2000) Fluorescence assays to study structure, dynamics, and function of RNA and RNA-ligand complexes. Methods Enzymol. 317, 409–440.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Rueda, D., Walter, N.G. (2006). Fluorescent Energy Transfer Readout of an Aptazyme-Based Biosensor. In: Didenko, V.V. (eds) Fluorescent Energy Transfer Nucleic Acid Probes. Methods in Molecular Biology™, vol 335. Humana Press. https://doi.org/10.1385/1-59745-069-3:289

Download citation

  • DOI: https://doi.org/10.1385/1-59745-069-3:289

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-380-0

  • Online ISBN: 978-1-59745-069-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics