Skip to main content

Organ Preservation

  • Protocol
Transplantation Immunology

Part of the book series: Methods In Molecular Biology™ ((MIMB,volume 333))

Abstract

The success of organ transplantation is critically dependent on the quality of the donor organ. Donor organ quality, in turn, is determined by a variety of factors including donor age and preexisting disease, the mechanism of brain death, donor management prior to organ procurement, the duration of hypothermic storage, and the circumstances of reperfusion. It has been recognized for some time that both the short- and long-term outcomes after cadaveric organ transplantation are significantly inferior to those obtained when the transplanted organ is obtained from a living donor, regardless of whether the donor is related or unrelated to the recipient. Brain death results in a series of hemodynamic, neurohormonal, and pro-inflammatory perturbations, all of which are thought to contribute to donor organ dysfunction. The process of transplantation exposes the donor organ to an obligatory period of ischemia and reperfusion. Traditionally, hypothermic storage of the donor organ has been used to protect it from ischemic injury, but donor organs differ markedly in their capacity to withstand hypothermic ischemia. Data from the Registry of the International Society for Heart and Lung Transplantation indicate that the risk of primary graft failure and death rises dramatically for both the heart and lung as ischemic time increases. Based on these data, maximum recommended ischemic times for the donor heart and lung are 6 and 8 h, respectively. In this chapter, strategies aimed at minimizing the adverse consequences of brain death and ischemia/reperfusion injury to the donor heart and lung are discussed. These strategies are likely to become increasingly important as the reliance on marginal donors increases to meet the growing demand for organ transplantation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rosendale J. D., Chabalewski F. L., McBride M. A., et al. (2002) Increased transplanted organs from the use of a standardized donor management protocol.[see comment]. Am. J. Transplant. 2(8), 761–768.

    Article  PubMed  Google Scholar 

  2. Taylor D. O., Edwards L. B., Mohacsi P. J., et al. (2003) The registry of the International Society for Heart and Lung Transplantation: twentieth official adult heart transplant report-2003. J. Heart Lung Transplant. 22(6), 616–624.

    Article  PubMed  Google Scholar 

  3. Trulock E. P., Edwards L. B., Taylor D. O., et al. (2003) The Registry of the International Society for Heart and Lung Transplantation: Twentieth Official adult lung and heart-lung transplant report-2003. J. Heart Lung Transplant. 22(6), 625–635.

    Article  PubMed  Google Scholar 

  4. Rosengard B. R., Feng S., Alfrey E. J., et al. (2002) Report of the Crystal City meeting to maximize the use of organs recovered from the cadaver donor. Am. J. Transplant. 2(8), 701–711.

    Article  PubMed  Google Scholar 

  5. Zaroff J. G., Rosengard B. R., Armstrong W. F., et al. (2002) Consensus conference report: maximizing use of organs recovered from the cadaver donor: cardiac recommendations, March 28–29, 2001, Crystal City, Va. Circulation 106(7), 836–841.

    Article  PubMed  Google Scholar 

  6. Terasaki P. I., Cecka J. M., Gjertson D. W., and Takemoto S. (1995) High survival rates of kidney transplants from spousal and living unrelated donors.[see comment]. N. Engl. J. Med. 333(6), 333–336.

    Article  CAS  PubMed  Google Scholar 

  7. Ryan J. B., Hicks M., Cropper J. R., et al. (2003) Functional evidence of reversible ischemic injury immediately after the sympathetic storm associated with experimental brain death. J. Heart Lung Transplant. 22(8), 922–928.

    Article  PubMed  Google Scholar 

  8. Pratschke J., Wilhelm M. J., Kusaka M., et al. (1999) Brain death and its influence on donor organ quality and outcome after transplantation. Transplantation 67(3), 343–348.

    Article  CAS  PubMed  Google Scholar 

  9. Finkelstein I., Toledo-Pereyra L. H., and Castellanos J. (1987) Physiologic and hormonal changes in experimentally induced brain dead dogs. Transplant. Proc. 19(5), 4156–4158.

    CAS  PubMed  Google Scholar 

  10. Macoviak J. A., McDougall I. R., Bayer M. F., Brown M., Tazelaar H., and Stinson E. B. (1987) Significance of thyroid dysfunction in human cardiac allograft procurement. Transplantation 43(6), 824–826.

    CAS  PubMed  Google Scholar 

  11. Mertes P. M., el Abassi K., Jaboin Y., et al. (1994) Changes in hemodynamic and metabolic parameters following induced brain death in the pig.[see comment]. Transplantation 58(4), 414–418.

    Article  CAS  PubMed  Google Scholar 

  12. Novitzky D., Wicomb W. N., Cooper D. K., and Tjaalgard M. A.(1987) Improved cardiac function following hormonal therapy in brain dead pigs: relevance to organ donation. Cryobiology 24(1), 1–10.

    Article  CAS  PubMed  Google Scholar 

  13. Bittner H. B., Kendall S. W., Campbell K. A., Montine T. J., and Van Trigt P. (1995) A valid experimental brain death organ donor model. J. Heart Lung Transplant. 14(2), 308–317.

    CAS  PubMed  Google Scholar 

  14. Depret J., Teboul J. L., Benoit G., Mercat A., and Richard C. (1995) Global energetic failure in brain-dead patients. Transplantation 60(9), 966–971.

    Article  CAS  PubMed  Google Scholar 

  15. Wicomb W. N., Cooper D. K., and Novitzky D. (1986) Impairment of renal slice function following brain death, with reversibility of injury by hormonal therapy. Transplantation 41(1), 29–33.

    Article  CAS  PubMed  Google Scholar 

  16. Novitzky D., Cooper D. K., and Reichart B. (1987) Hemodynamic and metabolic responses to hormonal therapy in brain-dead potential organ donors. Transplantation 43(6), 852–854.

    CAS  PubMed  Google Scholar 

  17. Howlett T. A., Keogh A. M., Perry L., Touzel R., and Rees L. H. (1989) Anterior and posterior pituitary function in brain-stem-dead donors. A possible role for hormonal replacement therapy. Transplantation 47(5), 828–834.

    Article  CAS  PubMed  Google Scholar 

  18. Gramm H. J., Meinhold H., Bickel U., et al. (1992) Acute endocrine failure after brain death? Transplantation 54(5), 851–857.

    Article  CAS  PubMed  Google Scholar 

  19. Masson F., Thicoipe M., Gin H., et al. (1993) The endocrine pancreas in braindead donors. A prospective study in 25 patients. Transplantation 56(2), 363–367.

    Article  CAS  PubMed  Google Scholar 

  20. Harms J., Isemer F. E., and Kolenda H. (1991) Hormonal alteration and pituitary function during course of brain-stem death in potential organ donors. Transplant. Proc. 23(5), 2614–2616.

    CAS  PubMed  Google Scholar 

  21. Arita K., Uozumi T., Oki S., Kurisu K., Ohtani M., and Mikami T. (1993) The function of the hypothalamo-pituitary axis in brain dead patients. Acta Neurochir. 123(1–2), 64–75.

    Article  CAS  Google Scholar 

  22. Takada M., Nadeau K. C., Hancock W. W., et al. (1998) Effects of explosive brain death on cytokine activation of peripheral organs in the rat. Transplantation 65(12), 1533–1542.

    Article  CAS  PubMed  Google Scholar 

  23. Pratschke J., Wilhelm M. J., Kusaka M., et al. (2000) Accelerated rejection of renal allografts from brain-dead donors. Ann. Surg. 232(2), 263–271.

    Article  CAS  PubMed  Google Scholar 

  24. Pienaar H., Schwartz I., Roncone A., Lotz Z., and Hickman R. (1990) Function of kidney grafts from brain-dead donor pigs. The influence of dopamine and triiodothyronine. Transplantation 50(4), 580–582.

    Article  CAS  PubMed  Google Scholar 

  25. Valero R. (2002) Donor management: one step forward.[comment]. Am. J. Transplant. 2(8), 693–694.

    Article  PubMed  Google Scholar 

  26. Mackersie R. C., Bronsther O. L., and Shackford S. R. (1991) Organ procurement in patients with fatal head injuries. The fate of the potential donor. Ann. Surg. 213(2), 143–150.

    Article  CAS  PubMed  Google Scholar 

  27. Excell L., Wride P., and Russ G. (2004) ANZOD Registry Report 2004. Adelaide, South Australia: The Australian & New Zealand Organ Donation Registry, pp. 44–48.

    Google Scholar 

  28. Marshall R., Ahsan N., Dhillon S., Holman M., and Yang H. C. (1996) Adverse effect of donor vasopressor support on immediate and one-year kidney allograft function. Surgery 120(4), 663–666.

    Article  CAS  PubMed  Google Scholar 

  29. O’Brien E. A., Bour S. A., Marshall R. L., Ahsan N.m and Yang H. C. (1996) Effect of use of vasopressors in organ donors on immediate function of renal allografts. J. Transplant Coord. 6(4), 215–216.

    Google Scholar 

  30. Nakatani T., Ishikawa Y., Kobayashi K., and Ozawa K. (1991) Hepatic mitochondrial redox state in hypotensive brain-dead patients and an effect of dopamine administration. Intensive Care Med. 17(2), 103–107.

    Article  CAS  PubMed  Google Scholar 

  31. Schneider A., Toledo-Pereyra L. H., Zeichner W. D., Allaben R., and Whitten J. (1983) Effect of dopamine and pitressin on kidneys procured and harvested for transplantation. Transplantation 36(1), 110–111.

    Article  CAS  PubMed  Google Scholar 

  32. Schnuelle P., Berger S., de Boer J., Persijn G., and van der Woude F. J. (2001) Effects of catecholamine application to brain-dead donors on graft survival in solid organ transplantation.[see comment]. Transplantation 72(3), 455–463.

    Article  CAS  PubMed  Google Scholar 

  33. Powner D. J. and Darby J. M. (2000) Management of variations in blood pressure during care of organ donors. Prog. Transplant. 10(1), 25–32.

    CAS  PubMed  Google Scholar 

  34. Powner D. J. and Kellum J. A. (2000) Maintaining acid-base balance in organ donors. Prog. Transplant. 10(2), 98–105.

    CAS  PubMed  Google Scholar 

  35. Powner D. J., Darby J. M., and Stuart S. A. (2000) Recommendations for mechanical ventilation during donor care. Prog. Transplant. 10(1), 33–40.

    CAS  PubMed  Google Scholar 

  36. Keck T., Banafsche R., Werner J., Gebhard M. M., Herfarth C., and Klar E. (2001) Desmopressin impairs microcirculation in donor pancreas and early graft function after experimental pancreas transplantation.[see comment]. Transplantation 72(2), 202–209.

    Article  CAS  PubMed  Google Scholar 

  37. Wagner H. J. and Braunwald E. (1956) The pressor effect of the antidiuretic principle of the posterior pituitary in orthostatic hypotension. J. Clin. Invest. 35, 1412–1418.

    Article  CAS  PubMed  Google Scholar 

  38. Yoshioka T., Sugimoto H., Uenishi M., et al. (1986) Prolonged hemodynamic maintenance by the combined administration of vasopressin and epinephrine in brain death: a clinical study. Neurosurgery 18(5), 565–567.

    Article  CAS  PubMed  Google Scholar 

  39. Pennefather S. H., Bullock R. E., Mantle D., and Dark J. H. (1995) Use of low dose arginine vasopressin to support brain-dead organ donors. Transplantation 59(1), 58–62.

    Article  CAS  PubMed  Google Scholar 

  40. Chen J. M., Cullinane S., Spanier T. B., et al. (1999) Vasopressin deficiency and pressor hypersensitivity in hemodynamically unstable organ donors. Circulation 100(19 Suppl.), II244–246.

    CAS  PubMed  Google Scholar 

  41. Manaka D., Okamoto R., Yokoyama T., et al. (1992) Maintenance of liver graft viability in the state of brain death. Synergistic effects of vasopressin and epinephrine on hepatic energy metabolism in brain-dead dogs. Transplantation 53(3), 545–550.

    Article  CAS  PubMed  Google Scholar 

  42. Kinoshita Y., Yahata K., Yoshioka T., Onishi S. and Sugimoto T. (1990) Long-term renal preservation after brain death maintained with vasopressin and epinephrine. Transplant Int. 3(1), 15–18.

    Article  CAS  Google Scholar 

  43. Nagareda T., Kinoshita Y., Tanaka A., et al. (1989) Clinicopathological study of livers from brain-dead patients treated with a combination of vasopressin and epinephrine. Transplantation 47(5), 792–797.

    Article  CAS  PubMed  Google Scholar 

  44. Salim A., Vassiliu P., Velmahos G. C., et al. (2001) The role of thyroid hormone administration in potential organ donors. Arch. Surg. 136(12), 1377–1380.

    Article  CAS  PubMed  Google Scholar 

  45. Garcia-Fages L. C., Cabrer C., Valero R., and Manyalich M. (1993) Hemodynamic and metabolic effects of substitutive triiodothyronine therapy in organ donors. Transplant. Proc. 25(6), 3038–3039.

    CAS  PubMed  Google Scholar 

  46. Goarin J. P., Cohen S., Riou B., et al.(1996) The effects of triiodothyronine on hemodynamic status and cardiac function in potential heart donors. Anesth. Analgesia 83(1), 41–47.

    Article  CAS  Google Scholar 

  47. Scheinkestel C. D., Tuxen D. V., Cooper D. J., and Butt W. (1995) Medical management of the (potential) organ donor. Anaest. Intensive Care 23(1), 51–59.

    CAS  Google Scholar 

  48. Meyers C. H., D’Amico T. A., Peterseim D. S., et al. (1993) Effects of triiodothyronine and vasopressin on cardiac function and myocardial blood flow after brain death.[see comment]. J. Heart Lung Transplant. 12(1 Pt. 1), 68–80.

    CAS  PubMed  Google Scholar 

  49. Taniguchi S., Kitamura S., Kawachi K., Doi Y., and Aoyama N. (1992) Effects of hormonal supplements on the maintenance of cardiac function in potential donor patients after cerebral death. Eur. J. Cardio-Thorac. Surg. 6(2), 96–102.

    Article  CAS  Google Scholar 

  50. Wheeldon D. R., Potter C. D., Oduro A., Wallwork J., and Large S. R. (1995) Transforming the “unacceptable” donor: outcomes from the adoption of a standardized donor management technique. J. Heart Lung Transplant. 14(4), 734–742.

    CAS  PubMed  Google Scholar 

  51. Novitzky D., Cooper D. K., and Reichart B. (1987) The value of hormonal therapy in improving organ viability in the transplant donor. Transplant. Proc. 19(1 Pt. 3), 2037–2038.

    CAS  PubMed  Google Scholar 

  52. Novitzky D., Cooper D. K., Morrell D., and Isaacs S. (1988) Change from aerobic to anaerobic metabolism after brain death, and reversal following triiodothyronine therapy. Transplantation 45(1), 32–36.

    Article  CAS  PubMed  Google Scholar 

  53. Rosendale J. D., Kauffman H. M., McBride M. A., et al. (2003) Aggressive pharmacologic donor management results in more transplanted organs. Transplantation 75(4), 482–487.

    Article  PubMed  Google Scholar 

  54. Pratschke J., Kofla G., Wilhelm M. J., et al. (2001) Improvements in early behavior of rat kidney allografts after treatment of the brain-dead donor. Ann. Surg. 234(6), 732–740.

    Article  CAS  PubMed  Google Scholar 

  55. Segel L. D., Follette D. M., Castellanos L. M., Hayes R., Baker J. M., and Smolens I. V. (1997) Steroid pretreatment improves graft recovery in a sheep orthotopic heart transplantation model. J. Heart Lung Transplant. 16(4), 371–380.

    CAS  PubMed  Google Scholar 

  56. Follette D. M., Rudich S. M., and Babcock W. D. (1998) Improved oxygenation and increased lung donor recovery with high-dose steroid administration after brain death. J. Heart Lung Transplant. 17(4), 423–429.

    CAS  PubMed  Google Scholar 

  57. Rosendale J. D., Kauffman H. M., McBride M. A., et al. (2003) Hormonal resuscitation yields more transplanted hearts, with improved early function. Transplantation 75(8), 1336–1341.

    Article  PubMed  Google Scholar 

  58. Wicomb W., Cooper D. K., Hassoulas J., Rose A. G., and Barnard C. N. (1982) Orthotopic transplantation of the baboon heart after 20 to 24 hours’ preservation by continuous hypothermic perfusion with an oxygenated hyperosmolar solution. J. Thorac. Cardiovasc. Surg. 83(1), 133–140.

    CAS  PubMed  Google Scholar 

  59. Wicomb W. N., Cooper D. K., and Barnard C. N. (1982) Twenty-four-hour preservation of the pig heart by a portable hypothermic perfusion system. Transplantation 34(5), 246–250.

    Article  CAS  PubMed  Google Scholar 

  60. Wicomb W. N. and Collins G. M. (1989) 24-hour rabbit heart storage with UW solution. Effects of low-flow perfusion, colloid, and shelf storage. Transplantation 48(1), 6–9.

    Article  CAS  PubMed  Google Scholar 

  61. Nickless D. K., Rabinov M., Richards S. M., Conyers R. A., and Rosenfeldt F. L. (1998) Continuous perfusion improves preservation of donor rat hearts: importance of the implantation phase. Ann. Thorac. Surg. 65(5), 1265–1272.

    Article  CAS  PubMed  Google Scholar 

  62. Jahania M. S., Sanchez J. A., Narayan P., Lasley R. D. and Mentzer R. M., Jr. (1999) Heart preservation for transplantation: principles and strategies. Ann. Thorac. Surg. 68(5), 1983–1987.

    Article  CAS  PubMed  Google Scholar 

  63. McCrystal G., Pepe S., Esmore D. and Rosenfeldt F. (2004) The challenge of improving donor heart prteservation. Heart Lung Circ. 13, 74–83.

    Article  PubMed  Google Scholar 

  64. Hendry P. J., Anstadt M. P., Plunkett M. D., et al. (1990) Optimal temperature for preservation of donor myocardium. Circulation 82(5 Suppl.), IV306–312.

    CAS  PubMed  Google Scholar 

  65. Shimada Y., Yamamoto F., Yamamoto H., Oka T., and Kawashima Y. (1996) Temperature-dependent cardioprotection of exogenous substrates in long-term heart preservation with continuous perfusion: twenty-four-hour preservation of isolated rat heart with St. Thomas’ Hospital solution containing glucose, insulin, and aspartate. J. Heart Lung Transplant. 15(5), 485–495.

    CAS  PubMed  Google Scholar 

  66. Lazdunski M., Frelin C., and Vigne P. (1985) The sodium/hydrogen exchange system in cardiac cells: its biochemical and pharmacological properties and its role in regulating internal concentrations of sodium and internal pH. J. Mol. Cell. Cardiol. 17(11), 1029–1042.

    Article  CAS  PubMed  Google Scholar 

  67. Karmazyn M. (1999) The role of the myocardial sodium-hydrogen exchanger in mediating ischemic and reperfusion injury. From amiloride to cariporide. Ann. NY Acad. Sci. 874, 326–334.

    Article  CAS  PubMed  Google Scholar 

  68. Verma S., Fedak P. W., Weisel R. D., et al. (2002) Fundamentals of reperfusion injury for the clinical cardiologist. Circulation 105(20), 2332–2336.

    Article  PubMed  Google Scholar 

  69. Jordan J. E., Zhao Z. Q., and Vinten-Johansen J. (1999) The role of neutrophils in myocardial injury. Cardiovasc. Res. 43(4), 860–878.

    Article  CAS  PubMed  Google Scholar 

  70. Rezkalla S. H. and Kloner R. A. (2002) No-reflow phenomenon.[see comment]. Circulation 105(5), 656–662.

    Article  PubMed  Google Scholar 

  71. Pearl J. M., Drinkwater D. C., Jr., Laks H., Stein D. G., Capouya E. R., and Bhuta S. (1992) Leukocyte-depleted reperfusion of transplanted human hearts prevents ultrastructural evidence of reperfusion injury. J. Sur. Res. 52(4), 298–308.

    Article  CAS  Google Scholar 

  72. Pearl J. M., Drinkwater D. C., Laks H., Capouya E. R. and Gates R. N. (1992) Leukocyte-depleted reperfusion of transplanted human hearts: a randomized, double-blind clinical trial. J. Heart Lung Transplant. 11(6), 1082–1092.

    CAS  PubMed  Google Scholar 

  73. Wallwork J., Jones K., Cavarocchi N., Hakim M., and Higenbottam T. (1987) Distant procurement of organs for clinical heart-lung transplantation using a single flush technique. Transplantation 44(5), 654–658.

    Article  CAS  PubMed  Google Scholar 

  74. Hirt S. W., Wahlers T., Jurmann M., Fieguth H. G., Dammenhayn L., and Haverich A. (1992) Improvement of currently used methods for lung preservation with prostacyclin and University of Wisconsin solution. J. Heart Lung Transplant. 11(4 Pt. 1), 656–664.

    CAS  PubMed  Google Scholar 

  75. Nawata S., Sugi K., Ueda K., Nawata K., Kaneda Y., and Esato K. (1996) Prostacyclin analog OP2507 prevents pulmonary arterial and airway constriction during lung preservation and reperfusion. J. Heart Lung Transplant. 15(5), 470–474.

    CAS  PubMed  Google Scholar 

  76. Kishida A., Kurumi Y., and Kodama M. (1997) Efficacy of prostaglandin I2 analog on liver grafts subjected to 30 minutes of warm ischemia. Surg, Today 27(11), 1056–1060.

    Article  CAS  Google Scholar 

  77. Sanchez-Urdazpal L., Gores G. J., Ferguson D. M., and Krom R. A. (1991) Improved liver preservation with addition of iloprost to Eurocollins and University of Wisconsin storage solutions. Transplantation 52(6), 1105–1107.

    Article  CAS  PubMed  Google Scholar 

  78. Changani K. K., Fuller B. J., Bell J. D., Taylor-Robinson S. D., Moore D. P., and Davidson B. R. (1999) Improved preservation solutions for organ storage: a dynamic study of hepatic metabolism. Transplantation 68(3), 345–355.

    Article  CAS  PubMed  Google Scholar 

  79. Bhabra M. S., Hopkinson D. N., Shaw T. E., and Hooper T. L. (1996) Relative importance of prostaglandin/cyclic adenosine monophosphate and nitric oxide/cyclic guanosine monophosphate pathways in lung preservation. Ann. Thorac. Surg. 62(5), 1494–1499.

    Article  CAS  PubMed  Google Scholar 

  80. Du Z. Y., Hicks M., Jansz P., Rainer S., Spratt P., and Macdonald P. (1998) The nitric oxide donor, diethylamine NONOate, enhances preservation of the donor rat heart. J. Heart Lung Transplant. 17(11), 1113–1120.

    CAS  PubMed  Google Scholar 

  81. Baxter K., Howden B. O., and Jablonski P. (2001) Heart preservation with celsior solution improved by the addition of nitroglycerine. Transplantation 71(10), 1380–1384.

    Article  CAS  PubMed  Google Scholar 

  82. Drinkwater D. C., Rudis E., Laks H., et al. (1995) University of Wisconsin solution versus Stanford cardioplegic solution and the development of cardiac allograft vasculopathy. J. Heart Lung Transplant. 14(5), 891–896.

    CAS  PubMed  Google Scholar 

  83. Garlicki M. (2003) May preservation solution affect the incidence of graft vasculopathy in transplanted heart? Ann. Transplant. 8(1), 19–24.

    PubMed  Google Scholar 

  84. Demmy T. L., Biddle J. S., Bennett L. E., Walls J. T., Schmaltz R. A., and Curtis J. J. (1997) Organ preservation solutions in heart transplantation-patterns of usage and related survival. Transplantation 63(2), 262–269.

    Article  CAS  PubMed  Google Scholar 

  85. Richens D., Junius F., Hill A., Keogh A., Macdonald P., McGoldrick J., and Spratt P. (1993) Clinical study of crystalloid cardioplegia vs aspartate-enriched cardioplegia plus warm reperfusion for donor heart preservation. Transplant. Proc. 25(1 Pt. 2), 1608–1610.

    CAS  PubMed  Google Scholar 

  86. Wildhirt S. M., Weis M., Schulze C., et al. (2000) Effects of Celsior and University of Wisconsin preservation solutions on hemodynamics and endothelial function after cardiac transplantation in humans: a single-center, prospective, randomized trial. Transplant Int. 13(Suppl. 1), S203–211.

    Google Scholar 

  87. Remadi J. P., Baron O., Roussel J. C., et al. (2002) Myocardial preservation using Celsior solution in cardiac transplantation: early results and 5-year followup of a multicenter prospective study of 70 cardiac transplantations. Ann. Thorac. Surg. 73(5), 1495–1499.

    Article  PubMed  Google Scholar 

  88. Vega J. D., Ochsner J. L., Jeevanandam V., et al. (2001) A multicenter, randomized, controlled trial of Celsior for flush and hypothermic storage of cardiac allografts. Ann. Thorac. Surg. 71(5), 1442–1447.

    Article  CAS  PubMed  Google Scholar 

  89. Chambers D. J. and Hearse D. J. (1999) Developments in cardioprotection: “polarized” arrest as an alternative to “depolarized” arrest. Ann. Thorac. Surg. 68(5), 1960–1966.

    Article  CAS  PubMed  Google Scholar 

  90. Suleiman M. S., Halestrap A. P., and Griffiths E. J. (2001) Mitochondria: a target for myocardial protection. Pharmacol. Ther. 89(1), 29–46.

    Article  CAS  PubMed  Google Scholar 

  91. Yang Q., Zhang R. Z., Yim A. P., and He G. W. (2004) Histidine-tryptophanketoglutarate solution maximally preserves endothelium-derived hyperpolarizing factor-mediated function during heart preservation: comparison with University of Wisconsin solution. J. Heart Lung Transplant. 23(3), 352–59.

    Article  PubMed  Google Scholar 

  92. Sorajja P., Cable D. G., and Schaff H. V. (1997) Hypothermic storage with University of Wisconsin solution preserves endothelial and vascular smoothmuscle function. Circulation 96(9 Suppl.), II–297–303.

    CAS  PubMed  Google Scholar 

  93. von Oppell U. O., Pfeiffer S., Preiss P., Dunne T., Zilla P., and Reichart B. (1990) Endothelial cell toxicity of solid-organ preservation solutions. Ann. Thorac. Surg. 50(6), 902–910.

    Article  Google Scholar 

  94. Ou R., Gavin J. B., Esmore D. S., and Rosenfeldt F. L. (1999) Increased temperature reduces the protective effect of University of Wisconsin solution in the heart[see comment]. Ann. Thorac. Surg. 68(5), 1628–1635.

    Article  CAS  PubMed  Google Scholar 

  95. Dobson G. P. and Jones M. W. (2004) Adenosine and lidocaine: a new concept in nondepolarizing surgical myocardial arrest, protection, and preservation. J. Thorac. Cardiovasc. Surg. 127(3), 794–805.

    Article  CAS  PubMed  Google Scholar 

  96. Donnelly A. J. and Djuric M. (1991) Cardioplegia solutions. Am. J. Hosp. Pharm. 48(11), 2444–2460.

    CAS  PubMed  Google Scholar 

  97. Michel P., Hadour G., Rodriguez C., Chiari P., and Ferrera R. (2000) Evaluation of a new preservative solution for cardiac graft during hypothermia. J. Heart Lung Transplant. 19(11), 1089–1097.

    Article  CAS  PubMed  Google Scholar 

  98. Michel P., Vial R., Rodriguez C., and Ferrera R. (2002) A comparative study of the most widely used solutions for cardiac graft preservation during hypothermia. J. Heart Lung Transplant. 21(9), 1030–1039.

    Article  PubMed  Google Scholar 

  99. Chen R. H. (1996) The scientific basis for hypocalcemic cardioplegia and reperfusion in cardiac surgery. Ann. Thorac. Surg. 62(3), 910–914.

    Article  CAS  PubMed  Google Scholar 

  100. Fukuhiro Y., Wowk M., Ou R., Rosenfeldt F., and Pepe S. (2000) Cardioplegic strategies for calcium control: low Ca(2+), high Mg(2+), citrate, or Na(+)/H(+) exchange inhibitor HOE-642. Circulation 102(19 Suppl. 3), III319–325.

    CAS  PubMed  Google Scholar 

  101. McCully J. D. and Levitsky S. (2003) The mitochondrial K(ATP) channel and cardioprotection. Ann. Thorac. Surg. 75(2), S667–673.

    Article  PubMed  Google Scholar 

  102. Southard J. H., van Gulik T. M., Ametani M. S., et al. (1990) Important components of the UW solution. Transplantation 49(2), 251–257.

    Article  CAS  PubMed  Google Scholar 

  103. Biguzas M., Jablonski P., Howden B. O., et al. (1990) Evaluation of UW solution in rat kidney preservation. II. The effect of pharmacological additives. Transplantation 49(6), 1051–1055.

    Article  CAS  PubMed  Google Scholar 

  104. Kevelaitis E., Oubenaissa A., Mouas C., Peynet J., and Menasche P. (2001) Ischemic preconditioning with opening of mitochondrial adenosine triphosphatesensitive potassium channels or Na/H exchange inhibition: which is the best protective strategy for heart transplants? J. Thorac. Cardiovasc. Surg. 121(1), 155–162.

    Article  Google Scholar 

  105. Theroux P., Chaitman B. R., Danchin N., et al. (2000) Inhibition of the sodiumhydrogen exchanger with cariporide to prevent myocardial infarction in highrisk ischemic situations. Main results of the GUARDIAN trial. Guard during ischemia against necrosis (GUARDIAN) Investigators. Circulation 102(25), 3032–3038.

    CAS  PubMed  Google Scholar 

  106. Cropper J. R., Hicks M., Ryan J. B., and Macdonald P. S. (2003) Cardioprotection by cariporide after prolonged hypothermic storage of the isolated working rat heart. J. Heart Lung Transplant. 22(8), 929–936.

    Article  PubMed  Google Scholar 

  107. Grover G. J., McCullough J. R., D’Alonzo A. J., Sargent C. A., and Atwal K. S. (1995) Cardioprotective profile of the cardiac-selective ATP-sensitive potassium channel opener BMS-180448. Journal of Cardiovascular Pharmacology 25(1), 40–50.

    Article  CAS  PubMed  Google Scholar 

  108. Murry C. E., Jennings R. B., and Reimer K. A. (1986) Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation 74(5), 1124–1136.

    CAS  PubMed  Google Scholar 

  109. Du Z. Y., Hicks M., Spratt P., Mundy J. A., and Macdonald P. S. (1998) Cardioprotective effects of pinacidil pretreatment and lazaroid (U74500A) preservation in isolated rat hearts after 12-hour hypothermic storage. Transplantation 66(2), 158–163.

    Article  CAS  PubMed  Google Scholar 

  110. Hicks M., Du Z. Y., Jansz P., Rainer S., Spratt P., and Macdonald P. S. (1999) ATP-sensitive potassium channel activation mimics the protective effect of ischaemic preconditioning in the rat isolated working heart after prolonged hypothermic storage. Clin. Exp. Pharm. Physiol. 26(1), 20–25.

    Article  CAS  Google Scholar 

  111. Cropper J. R., Hicks M., Ryan J. B., and Macdonald P. S. (2003) Enhanced cardioprotection of the rat heart during hypothermic storage with combined Na+-H+ exchange inhibition and ATP-dependent potassium channel activation. J. Heart Lung Transplant. 22(11), 1245–1253.

    Article  PubMed  Google Scholar 

  112. Pinelli G., Mertes P. M., Carteaux J. P., et al. (1995) Myocardial effects of experimental acute brain death: evaluation by hemodynamic and biological studies. Ann. Thorac. Surg. 60(6), 1729–1734.

    Article  CAS  PubMed  Google Scholar 

  113. Halejcio-Delophont P., Siaghy E. M., Devaux Y., et al. (1998) Increase in myocardial interstitial adenosine and net lactate production in brain-dead pigs: an in vivo microdialysis study. Transplantation 66(10), 1278–1284.

    Article  CAS  PubMed  Google Scholar 

  114. Toyoda Y., Levitsky S., and McCully J. D. (2001) Opening of mitochondrial ATP-sensitive potassium channels enhances cardioplegic protection. Ann. Thorac. Surg. 71(4), 1281–1289.

    Article  CAS  PubMed  Google Scholar 

  115. Ryan J. B., Hicks M., Cropper J. R., et al. (2003) Sodium-hydrogen exchanger inhibition, pharmacologic ischemic preconditioning, or both for extended cardiac allograft preservation. Transplantation 76(5), 766–771.

    Article  CAS  PubMed  Google Scholar 

  116. Thabut G., Vinatier I., Stern J. B., et al. (2002) Primary graft failure following lung transplantation: predictive factors of mortality[see comment]. Chest 121(6), 1876–1882.

    Article  PubMed  Google Scholar 

  117. Fiser S. M., Tribble C. G., Long S. M., et al. (2002) Ischemia-reperfusion injury after lung transplantation increases risk of late bronchiolitis obliterans syndrome. Ann. Thorac. Surg. 73(4), 1041–1048.

    Article  PubMed  Google Scholar 

  118. Hopkinson D. N., Bhabra M. S., and Hooper T. L. (1998) Pulmonary graft preservation: a worldwide survey of current clinical practice. J. Heart Lung Transplant. 17(5), 525–531.

    CAS  PubMed  Google Scholar 

  119. Novick R. J., Reid K. R., Denning L., Duplan J., Menkis A. H., and McKenzie F. N. (1991) Prolonged preservation of canine lung allografts: the role of prostaglandins. Ann. Thorac. Surg. 51(5), 853–859.

    Article  CAS  PubMed  Google Scholar 

  120. Bonser R. S., Fragomeni L. S., Jamieson S. W., et al (1991) Effects of prostaglandin E1 in twelve-hour lung preservation. J. Heart Lung Transplant. 10(2), 310–316.

    CAS  PubMed  Google Scholar 

  121. Sarsam M. A., Yonan N. A., Deiraniya A. K., and Rahman A. N. (1993) Retrograde pulmonaryplegia for lung preservation in clinical transplantation: a new technique. J. Heart Lung Transplant. 12(3), 494–498.

    CAS  PubMed  Google Scholar 

  122. Varela A., Cordoba M., Serrano-Fiz S., et al. (1997) Early lung allograft function after retrograde and antegrade preservation. J. Thorac. Cardiovasc. Surg. 114(6), 1119–1120.

    Article  CAS  PubMed  Google Scholar 

  123. Venuta F., Rendina E. A., Bufi M., et al. (1999) Preimplantation retrograde pneumoplegia in clinical lung transplantation. [see comment]. J. Thorac. Cardiovasc. Surg. 118(1), 107–114.

    Article  CAS  PubMed  Google Scholar 

  124. Steen S., Kimblad P. O., Sjoberg T., Lindberg L., Ingemansson R., and Massa G. (1994) Safe lung preservation for twenty-four hours with Perfadex. [see comment]. Ann. Thorac. Surg. 57(2), 450–457.

    Article  CAS  PubMed  Google Scholar 

  125. Homatas J., Bryant L., and Eiseman B. (1968) Time limits of cadaver lung viability. J. Thorac. Cardiovasc. Surg. 56(1), 132–140.

    CAS  PubMed  Google Scholar 

  126. Veith F. J., Sinha S. B., Graves J. S., Boley S. J., and Dougherty J. C. (1971) Ischemic tolerance of the lung. The effect of ventilation and inflation. J. Thorac. Cardiovasc. Surg. 61(5), 804–810.

    CAS  PubMed  Google Scholar 

  127. Stevens G. H., Sanchez M. M., and Chappell G. L. (1973) Enhancement of lung preservation by prevention of lung collapse. J. Surg. Res. 14(5), 400–405.

    Article  CAS  PubMed  Google Scholar 

  128. Puskas J. D., Hirai T., Christie N., Mayer E., Slutsky A. S., and Patterson G. A. (1992) Reliable thirty-hour lung preservation by donor lung hyperinflation. J. Thorac. Cardiovasc. Surg. 104(4), 1075–1083.

    CAS  PubMed  Google Scholar 

  129. DeCampos K. N., Keshavjee S., Liu M., and Slutsky A. S. (1998) Optimal inflation volume for hypothermic preservation of rat lungs. J. Heart Lung Transplant. 17(6), 599–607.

    CAS  PubMed  Google Scholar 

  130. Haniuda M., Hasegawa S., Shiraishi T., Dresler C. M., Cooper J. D., and Patterson G. A. (1996) Effects of inflation volume during lung preservation on pulmonary capillary permeability. J. Thorac. Cardiovasc. Surg. 112(1), 85–93.

    Article  CAS  PubMed  Google Scholar 

  131. Aoe M., Okabayashi K., Cooper J. D., and Patterson G. A. (1996) Hyperinflation of canine lung allografts during storage increases reperfusion pulmonary edema. J. Thorac. Cardiovasc. Surg. 112(1), 94-102.

    Article  CAS  PubMed  Google Scholar 

  132. De Leyn P. R., Lerut T. E., Schreinemakers H. H., Van Raemdonck D. E., Mubagwa K., and Flameng W. (1993) Effect of inflation on adenosine triphosphate catabolism and lactate production during normothermic lung ischemia. Ann. Thorac. Surg. 55(5), 1073–1079.

    Article  PubMed  Google Scholar 

  133. Date H., Matsumura A., Manchester J. K., Cooper J. M., Lowry O. H., and Cooper J. D. (1993) Changes in alveolar oxygen and carbon dioxide concentration and oxygen consumption during lung preservation. The maintenance of aerobic metabolism during lung preservation. J. Thorac. Cardiovasc. Surg. 105(3), 492–501.

    CAS  PubMed  Google Scholar 

  134. Fisher A. B., Dodia C., Tan Z. T., Ayene I., and Eckenhoff R. G. (1991) Oxygen-dependent lipid peroxidation during lung ischemia. J. Clin. Invest. 88(2), 674–679.

    Article  CAS  PubMed  Google Scholar 

  135. Haniuda M., Dresler C. M., Mizuta T., Cooper J. D., and Patterson G. A. (1995) Free radical-mediated vascular injury in lungs preserved at moderate hypothermia. Ann. Thorac. Surg. 60(5), 1376–1381.

    Article  CAS  PubMed  Google Scholar 

  136. Feeley T. W., Mihm F. G., Downing T. P., et al. (1985) The effect of hypothermic preservation of the heart and lungs on cardiorespiratory function following canine heart-lung transplantation. Ann. Thorac. Surg. 39(6), 558–562.

    Article  CAS  PubMed  Google Scholar 

  137. Muller C., Hoffmann H., Bittmann I., et al. (1997) Hypothermic storage alone in lung preservation for transplantation: a metabolic, light microscopic, and functional analysis after 18 hours of preservation. Transplantation 63(5), 625–630.

    Article  CAS  PubMed  Google Scholar 

  138. Wang L. S., Yoshikawa K., Miyoshi S., et al. (1989) The effect of ischemic time and temperature on lung preservation in a simple ex vivo rabbit model used for functional assessment. J. Thorac. Cardiovasc. Surg. 98(3), 333–342.

    CAS  PubMed  Google Scholar 

  139. Shiraishi T., Igisu H., and Shirakusa T. (1994) Effects of pH and temperature on lung preservation: a study with an isolated rat lung reperfusion model. Ann. Thorac. Surg. 57(3), 639–643.

    Article  CAS  PubMed  Google Scholar 

  140. Kelly R. F. (2000) Current strategies in lung preservation. J. Lab. Clin. Med. 136(6), 427–440.

    Article  CAS  PubMed  Google Scholar 

  141. Du Z. Y., Hicks M., Winlaw D., Spratt P., and Macdonald P. (1996) Ischemic preconditioning enhances donor lung preservation in the rat. J. Heart Lung Transplant. 15(12), 1258–1267.

    CAS  PubMed  Google Scholar 

  142. Al-Mehdi A. B., Zhao G., Dodia C., et al. (1998) Endothelial NADPH oxidase as the source of oxidants in lungs exposed to ischemia or high K+. Circ. Res. 83(7), 730–737.

    CAS  PubMed  Google Scholar 

  143. Eppinger M. J., Jones M. L., Deeb G. M., Bolling S. F., and Ward P. A. (1995) Pattern of injury and the role of neutrophils in reperfusion injury of rat lung. J. Surg. Res. 58(6), 713–718.

    Article  CAS  PubMed  Google Scholar 

  144. Eppinger M. J., Deeb G. M., Bolling S. F., and Ward P. A. (1997) Mediators of ischemia-reperfusion injury of rat lung. Am. J. Pathol. 150(5), 1773–1784.

    CAS  PubMed  Google Scholar 

  145. Nezu K., Kushibe K., Tojo T., et al. (1994) Protection against lipid peroxidation induced during preservation of lungs for transplantation. J. Heart Lung Transplant. 13(6), 998–1002.

    CAS  PubMed  Google Scholar 

  146. Du Z., Hicks M., Winlaw D., Macdonald P., and Spratt P. (1995) Lazaroid U74500A enhances donor lung preservation in the rat transplant model. Transplant. Proc. 27(6), 3574–3577.

    CAS  PubMed  Google Scholar 

  147. Breda M. A., Hall T. S., Stuart R. S., et al. (1985) Twenty-four hour lung preservation by hypothermia and leukocyte depletion. J. Heart Transplant. 4(3), 325–329.

    CAS  PubMed  Google Scholar 

  148. Pillai R., Bando K., Schueler S., Zebly M., Reitz B. A., and Baumgartner W. A. (1990) Leukocyte depletion results in excellent heart-lung function after 12 hours of storage. Ann. Thorac. Surg. 50(2), 211–214.

    Article  CAS  PubMed  Google Scholar 

  149. Adatia I., Lillehei C., Arnold J. H., et al. (1994) Inhaled nitric oxide in the treatment of postoperative graft dysfunction after lung transplantation. Ann. Thorac. Surg. 57(5), 1311–138.

    Article  CAS  PubMed  Google Scholar 

  150. Macdonald P., Mundy J., Rogers P., et al. (1995) Successful treatment of lifethreatening acute reperfusion injury after lung transplantation with inhaled nitric oxide. J. Thorac. Cardiovasc. Surg. 110(3), 861–863.

    Article  CAS  PubMed  Google Scholar 

  151. Chetham P. M., Sefton W. D., Bridges J. P., Stevens T., and McMurtry I. F. (1997) Inhaled nitric oxide pretreatment but not posttreatment attenuates ischemiareperfusion-induced pulmonary microvascular leak. Anesthesiology 86(4), 895–902.

    Article  CAS  PubMed  Google Scholar 

  152. Struber M., Harringer W., Ernst M., et al. (1999) Inhaled nitric oxide as a prophylactic treatment against reperfusion injury of the lung. Thorac. Cardiovasc. Surg. 47(3), 179–82.

    Article  CAS  PubMed  Google Scholar 

  153. Eppinger M. J., Ward P. A., Jones M. L., Bolling S. F., and Deeb G. M. (1995) Disparate effects of nitric oxide on lung ischemia-reperfusion injury. Ann. Thorac. Surg. 60(5), 1169–1176.

    Article  CAS  PubMed  Google Scholar 

  154. Meade M. O., Granton J. T., Matte-Martyn A., et al. (2003) A randomized trial of inhaled nitric oxide to prevent ischemia-reperfusion injury after lung transplantation.[see comment]. Am. J. Respir. Crit. Care Med. 167(11), 1483–1489.

    Article  PubMed  Google Scholar 

  155. Novick R. J., Possmayer F., Veldhuizen R. A., Menkis A. H., and McKenzie F. N. (1991) Surfactant analysis and replacement therapy: a future tool of the lung transplant surgeon? Ann. Thorac. Surg. 52(5), 1194–1200.

    Article  CAS  PubMed  Google Scholar 

  156. Buchanan S. A., Mauney M. C., Parekh V. I., et al. (1996) Intratracheal surfactant administration preserves airway compliance during lung reperfusion. Ann. Thorac. Surg. 62(6), 1617–1621.

    Article  CAS  PubMed  Google Scholar 

  157. Struber M., Hirt S. W., Cremer J., Harringer W., and Haverich A. (1999) Surfactant replacement in reperfusion injury after clinical lung transplantation. Intens. Care Med. 25(8), 862–864.

    Article  CAS  Google Scholar 

  158. Struber M., Brandt M., Cremer J., Harringer W., Hirt S. W., and Haverich A. (1996) Therapy for lung failure using nitric oxide inhalation and surfactant replacement[see comment]. Ann. Thorac. Surg. 61(5), 1543–1545.

    Article  CAS  PubMed  Google Scholar 

  159. Della Rocca G., Pierconti F., Costa M. G., et al. (2002) Severe reperfusion lung injury after double lung transplantation [see comment]. Cri. Care (Lond.) 6(3), 240–244.

    Article  Google Scholar 

  160. Bhabra M. S., Hopkinson D. N., Shaw T. E., Onwu N., and Hooper T. L. (1998) Controlled reperfusion protects lung grafts during a transient early increase in permeability[see comment]. Ann. Thorac. Surg. 65(1), 187–192.

    Article  CAS  PubMed  Google Scholar 

  161. Hopkinson D. N., Bhabra M. S., Odom N. J., Bridgewater B. J., Van Doorn C. A., and Hooper T. L. (1996) Controlled pressure reperfusion of rat pulmonary grafts yields improved function after twenty-four-hours’ cold storage in University of Wisconsin solution. J. Heart Lung Transplant. 15(3), 283–290.

    CAS  PubMed  Google Scholar 

  162. Halldorsson A., Kronon M., Allen B. S., et al. (1998) Controlled reperfusion after lung ischemia: implications for improved function after lung transplantation. J. Thorac. Cardiovasc. Surg. 115(2), 415–425.

    Article  CAS  PubMed  Google Scholar 

  163. Halldorsson A. O., Kronon M., Allen B. S., et al. (1998) Controlled reperfusion prevents pulmonary injury after 24 hours of lung preservation. [see comment]. Ann. Thorac. Surg. 66(3), 877–885.

    Article  CAS  PubMed  Google Scholar 

  164. Lick S. D., Brown P. S., Jr., Kurusz M., et al. (2000) Technique of controlled reperfusion of the transplanted lung in humans [see comment]. Ann. Thorac. Surg. 69(3), 910–912.

    Article  CAS  PubMed  Google Scholar 

  165. Kurusz M., Roach J. D., Jr., Vertrees R. A., Girouard M. K., and Lick S. D. (2002) Leukocyte filtration in lung transplantation. Perfusion 17(Suppl.), 63–67.

    Article  Google Scholar 

  166. Kondo Y., Turner M. D., Cockrell J. V., and Hardy J. D. (1974) Ischemic tolerance of the canine autotransplanted lung. Surgery 76(3), 447–453.

    CAS  PubMed  Google Scholar 

  167. Veith F. J., Crane R., Torres M., et al. (1976) Effective preservation and transportation of lung transplants. J. Thorac. Cardiovasc. Surg. 72(1), 97–105.

    CAS  PubMed  Google Scholar 

  168. Bresticker M. A., LoCicero J., 3rd, Oba J., and Greene R. (1992) Successful extended lung preservation with UW solution. Transplantation 54(5), 780–784.

    Article  CAS  PubMed  Google Scholar 

  169. Kawahara K., Ikari H., Hisano H., et al. (1991) Twenty-four-hour canine lung preservation using UW solution. Transplantation 51(3), 584–587.

    Article  CAS  PubMed  Google Scholar 

  170. Oka T., Puskas J. D., Mayer E., et al. (1991) Low-potassium UW solution for lung preservation. Comparison with regular UW, LPD, and Euro-Collins solutions. Transplantation 52(6), 984–988.

    Article  CAS  PubMed  Google Scholar 

  171. Sasaki S., Yasuda K., McCully J. D., and LoCicero J., 3rd (1999) Does PGE1 attenuate potassium-induced vasoconstriction in initial pulmonary artery flush on lung preservation? J. Heart Lung Transplant. 18(2), 139–142.

    Article  CAS  PubMed  Google Scholar 

  172. Kukkonen S., Heikkila L. J., Verkkala K., Mattila S. P., and Toivonen H. (1995) Prostaglandin E1 or prostacyclin in Euro-Collins solution fails to improve lung preservation. Ann. Thorac. Surg. 60(6), 1617–1622.

    Article  CAS  PubMed  Google Scholar 

  173. Sasaki S., Yasuda K., McCully J. D., and LoCicero J., 3rd (1999) Calcium channel blocker enhances lung preservation. J. Heart Lung Transplant. 18(2), 127–132.

    Article  CAS  PubMed  Google Scholar 

  174. Kelly R. F., Murar J., Hong Z., et al. (2003) Low potassium dextran lung preservation solution reduces reactive oxygen species production. Ann. Thorac. Surg. 75(6), 1705–1710.

    Article  PubMed  Google Scholar 

  175. Zoucas E., Goransson G., and Bengmark S. (1984) Colloid-induced changes in bleeding following liver resection in the rat. Res. Exp. Med. 184(4), 251–258.

    Article  CAS  Google Scholar 

  176. Fatkin D., Loupas T., Low J., and Feneley M. (1997) Inhibition of red cell aggregation prevents spontaneous echocardiographic contrast formation in human blood. Circulation 96(3), 889–896.

    CAS  PubMed  Google Scholar 

  177. Keshavjee S. H., Yamazaki F., Cardoso P. F., McRitchie D. I., Patterson G. A., and Cooper J. D. (1989) A method for safe twelve-hour pulmonary preservation. J. Thorac. Cardiovasc. Surg. 98(4), 529–534.

    CAS  PubMed  Google Scholar 

  178. Sasaki S., McCully J. D., Alessandrini F., and LoCicero J., 3rd (1995) Impact of initial flush potassium concentration on the adequacy of lung preservation. J. Thorac. Cardiovasc. Surg. 109(6), 1090–1096.

    Article  CAS  PubMed  Google Scholar 

  179. Hausen B., Beuke M., Schroeder F., et al. (1997) In vivo measurement of lung preservation solution efficacy: comparison of LPD, UW, EC and low K+-EC following short and extended ischemia. Eur. J. Cardio-Thorac. Surg. 12(5), 771–780.

    Article  CAS  Google Scholar 

  180. Carbognani P., Rusca M., Solli P., et al. (1997) Pneumocytes type II ultrastructural modifications after storage in preservation solutions for transplantation. Eur. Surg. Res. 29(5), 319–326.

    Article  Google Scholar 

  181. Aziz T. M., Pillay T. M., Corris P. A., et al. (2003) Perfadex for clinical lung procurement: is it an advance? Ann. Thorac. Surg. 75(3), 990–995.

    Article  PubMed  Google Scholar 

  182. Fischer S., Matte-Martyn A., “De” Perrot M., et al. (2001) Low-potassium dextran preservation solution improves lung function after human lung transplantation. J. Thorac. Cardiovasc. Surg. 121(3), 594–596.

    Article  CAS  PubMed  Google Scholar 

  183. Muller C., Furst H., Reichenspurner H., Briegel J., Groh J., and Reichart B. (1999) Lung procurement by low-potassium dextran and the effect on preservation injury. Munich Lung Transplant Group. Transplantation 68(8), 1139–1143.

    Article  CAS  PubMed  Google Scholar 

  184. Struber M., Wilhelmi M., Harringer W., et al. (2001) Flush perfusion with low potassium dextran solution improves early graft function in clinical lung transplantation. Eur. J. Cardio-Thorac. Surg. 19(2), 190–194.

    Article  CAS  Google Scholar 

  185. Muller C., Bittmann I., Hatz R., et al. (2002) Improvement of lung preservation-from experiment to clinical practice. Eu. Sur. Res. 34(1-2), 77–82.

    Article  CAS  Google Scholar 

  186. Rabanal J. M., Ibanez A. M., Mons R., et al. (2003) Influence of preservation solution on early lung function (Euro-Collins vs Perfadex) Transplant. Proc. 35(5), 1938–1939.

    Article  CAS  Google Scholar 

  187. Wagner F. M., Jamieson S. W., Fung J., Wolf P., Reichenspurner H., and Kaye M. P. (1995) A new concept for successful long-term pulmonary preservation in a dog model. Transplantation 59(11), 1530–1536.

    CAS  PubMed  Google Scholar 

  188. Wittwer T., Albes J. M., Fehrenbach A., et al. (2003) Experimental lung preservation with Perfadex: effect of the NO-donor nitroglycerin on postischemic outcome. J. Thorac. Cardiovasc. Surg. 125(6), 1208–1216.

    Article  CAS  PubMed  Google Scholar 

  189. Wittwer T., Wahlers T., Fehrenbach A., Elki S. and Haverich A. (1999) Improvement of pulmonary preservation with Celsior and Perfadex: impact of storage time on early post-ischemic lung function. J. Heart Lung Transplant. 18(12), 1198–11201.

    Article  CAS  PubMed  Google Scholar 

  190. Xiong L., Legagneux J., Wassef M., et al. (1999) Protective effects of Celsior in lung transplantation. J. Heart Lung Transplant. 18(4), 320–327.

    Article  CAS  PubMed  Google Scholar 

  191. Warnecke G., Struber M., Hohlfeld J. M., Niedermeyer J., Sommer S. P., and Haverich A. (2002) Pulmonary preservation with Bretscheider’s HTK and Celsior solution in minipigs. Eur. J. Cardio-Thorac. Surg. 21(6), 1073–1079.

    Article  Google Scholar 

  192. Thabut G., Vinatier I., Brugiere O., et al. (2001) Influence of preservation solution on early graft failure in clinical lung transplantation. Am. J. Respir. Crit. Care Med. 164(7), 1204–1208.

    Google Scholar 

  193. Levine S. M. and Transplant/Immunology Network of the American College of Chest, (2004) A survey of clinical practice of lung transplantation in North America[see comment]. Chest 125(4), 1224–1238.

    Article  PubMed  Google Scholar 

  194. Kootstra G. (1997) The asystolic, or non-heartbeating, donor. Transplantation 63(7), 917–921.

    Article  CAS  PubMed  Google Scholar 

  195. Egan T. M., Lambert C. J., Jr., Reddick R., Ulicny K. S., Jr., Keagy B. A. and Wilcox B. R. (1991) A strategy to increase the donor pool: use of cadaver lungs for transplantation. Ann. Thorac. Surg. 52(5), 1113–1121.

    Article  CAS  PubMed  Google Scholar 

  196. Aitchison J. D., Orr H. E., Flecknell P. A., Kirby J. A. and Dark J. H. (2001) Functional assessment of non-heart-beating donor lungs: prediction of post-transplant function. Eur. J. Cardio-Thorac. Surg. 20(1), 187–194.

    Article  CAS  Google Scholar 

  197. Bacha E. A., Sellak H., Murakami S., et al. (1997) Inhaled nitric oxide attenuates reperfusion injury in non-heartbeating-donor lung transplantation. Paris-Sud University Lung Transplantation Group. Transplantation 63(10), 1380–1386.

    Article  CAS  PubMed  Google Scholar 

  198. Luh S. P., Tsai C. C., Shau W. Y., et al. (2000) The effects of inhaled nitric oxide, gabexate mesilate, and retrograde flush in the lung graft from non-heart beating minipig donors. Transplantation 69(10), 2019–2027.

    Article  CAS  PubMed  Google Scholar 

  199. Naka Y., Chowdhury N. C., Liao H., et al. (1995) Enhanced preservation of orthotopically transplanted rat lungs by nitroglycerin but not hydralazine. Requirement for graft vascular homeostasis beyond harvest vasodilation. Circ. Res. 76(5), 900–906.

    CAS  PubMed  Google Scholar 

  200. Loehe F., Preissler G., Annecke T., Bittmann I., Jauch K. W. and Messmer K. (2004) Continuous infusion of nitroglycerin improves pulmonary graft function of non-heart-beating donor lungs. Transplantation 77(12), 1803–1808.

    Article  CAS  PubMed  Google Scholar 

  201. Siegmund B., Klietz T., Schwartz P. and Piper H. M. (1991) Temporary contractile blockade prevents hypercontracture in anoxic-reoxygenated cardiomyocytes. Am. J. Physiol. 260(2 Pt. 2), H426–435.

    CAS  PubMed  Google Scholar 

  202. Garcia-Dorado D., Theroux P., Duran J. M., et al. (1992) Selective inhibition of the contractile apparatus. A new approach to modification of infarct size, infarct composition, and infarct geometry during coronary artery occlusion and reperfusion. Circulation 85(3), 1160–1174.

    CAS  PubMed  Google Scholar 

  203. Warnecke G., Schulze B., Hagl C., Haverich A. and Klima U. (2002) Improved right heart function after myocardial preservation with 2,3-butanedione 2-monoxime in a porcine model of allogenic heart transplantation. J. Thorac. Cardiovasc. Surg. 123(1), 81–88.

    Article  CAS  PubMed  Google Scholar 

  204. Okada K., Yamashita C., and Okada M. (1996) Efficacy of oxygenated University of Wisconsin solution containing endothelin-A receptor antagonist in twenty-four-hour heart preservation. J. Heart Lung Transplant. 15(5), 475–484.

    CAS  PubMed  Google Scholar 

  205. Ryan J. B., Hicks M., Cropper J. R., et al. (2003) Cariporide (HOE-642) improves cardiac allograft preservation in a porcine model of orthotopic heart transplantation. Transplantation 75(5), 625–631.

    Article  CAS  PubMed  Google Scholar 

  206. Hashimoto N., Takeyoshi I., Yoshinari D., et al. (2002) Effects of a p38 mitogen-activated protein kinase inhibitor as an additive to Euro-Collins solution on reperfusion injury in canine lung transplantation1. Transplantation 74(3), 320–326.

    Article  CAS  PubMed  Google Scholar 

  207. Roberts J. R., Rowe P. A., and Demaine A. G. (2002) Activation of NF-kappaB and MAP kinase cascades by hypothermic stress in endothelial cells. Cryobiology 44(2), 161–169.

    Article  CAS  PubMed  Google Scholar 

  208. Tsuchihashi S., Tamaki T., Tanaka M., et al. (2003) Pyrrolidine dithiocarbamate provides protection against hypothermic preservation and transplantation injury in the rat liver: the role of heme oxygenase-1. Surgery 133(5), 556–567.

    Article  PubMed  Google Scholar 

  209. Szabo G., Soos P., Bahrle S., et al. (2004) Role of poly(ADP-ribose) polymerase activation in the pathogenesis of cardiopulmonary dysfunction in a canine model of cardiopulmonary bypass. Eur. J. Cardio-Thorac. Surg. 25(5), 825–832.

    Article  Google Scholar 

  210. Mangino M. J., Ametani M., Szabo C., and Southard J. H. (2004) Poly(ADPribose) polymerase and renal hypothermic preservation injury. Am. J. Physiol. Renal Fluid. Electrolyte Physiol. 286(5), F838–847.

    Article  CAS  PubMed  Google Scholar 

  211. Ahlenstiel T., Burkhardt G., Kohler H., and Kuhlmann M. K. (2003) Bioflavonoids attenuate renal proximal tubular cell injury during cold preservation in Euro-Collins and University of Wisconsin solutions. Kidney Int. 63(2), 554–563.

    Article  CAS  PubMed  Google Scholar 

  212. Omasa M., Fukuse T., Matsuoka K., Inui K., Hyon S. H., and Wada H. (2003) Effect of green tea extracted polyphenol on ischemia/reperfusion injury after cold preservation of rat lung. Transplant. Proc. 35(1), 138–139.

    Article  CAS  PubMed  Google Scholar 

  213. Du Z., Hicks M., and Macdonald P. (1997) Enhanced preservation of the rat heart after prolonged hypothermic storage with the 21-aminosteroid compound U74500A. Asia Pacific Heart J. 6, 184–189.

    Article  Google Scholar 

  214. Ryan J. B., Hicks M., Cropper J. R., et al. (2003) Lazaroid (U74389G)-supplemented cardioplegia: results of a double-blind, randomized, controlled trial in a porcine model of orthotopic heart transplantation. J. Heart Lung Transplant. 22(3), 347–356.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc.

About this protocol

Cite this protocol

Hicks, M., Hing, A., Gao, L., Ryan, J., MacDonald, P.S. (2006). Organ Preservation. In: Hornick, P., Rose, M. (eds) Transplantation Immunology. Methods In Molecular Biology™, vol 333. Humana Press. https://doi.org/10.1385/1-59745-049-9:331

Download citation

  • DOI: https://doi.org/10.1385/1-59745-049-9:331

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-544-6

  • Online ISBN: 978-1-59745-049-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics