Skip to main content

Biological Applications of Manganese-Enhanced Magnetic Resonance Imaging

  • Protocol
Magnetic Resonance Imaging

Part of the book series: Methods in Molecular Medicineā„¢ ((MIMM,volume 124))

Abstracts

The manganese ion (Mn2+) has long been used in biomedical research as an indicator of calcium (Ca2+) influx in conjunction with fluorescent microscopy because it is well established that Mn2+ enters cells through voltage-gated Ca2+ channels. Mn2+ is also paramagnetic, resulting in a shortening of the spin-lattice relaxation time constant, T1, which yields positive contrast enhancement in T1-weighted magnetic resonance imaging (MRI), specific to tissues in which the ion has accumulated. Manganese-enhanced MRI (MEMRI) uses a combination of these properties of Mn2+ to elucidate anatomical information and to identify regions of cellular activity. The focus of this chapter will detail some of the current MEMRI methodologies and biological applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Merrit J. E., Jacob R., and Hallam T. J. (1989) Use of manganese to discriminate between calcium influx and mobilization from internal stores in stimulated human neutrophils. J. Biol. Chem. 264, 1522ā€“1527.

    Google ScholarĀ 

  2. Simpson P. B., Challiss R. A., and Nahorski S. R. (1995) Divalent cation entry in cultured rat cerebellar granule cells measured using Mn2+ quench of fura 2 fluorescence. Eur. J. Neurosci. 7, 831ā€“840.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  3. Tisch-Idelson D., Sharabani M., Kloog Y., and Aviram I. (1999) Stimulation of neutrophils by prenylcysteine analogs: Ca2+ release and influx. Biochim. Biophys. Acta. 1451, 187ā€“195.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  4. Wiemann M., Busselberg D., Schirrmacher K., and Bingmann D. (1998) A calcium release activated calcium influx in primary cultures of rat osteoblast-like cells. Calcif. Tissue Int. 63, 154ā€“159.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  5. Du C., MacGowan G. A., Farkas D. L., and Koretsky A. P. (2001) Calibration of the calcium dissociation constant of Rhod(2) in the perfused mouse heart using manganese quenching. Cell Calcium 29, 217ā€“227.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  6. Narita K., Kawasaki F., and Kita H. (1990) Mn and Mg influxes through Ca channels of motor nerve terminals are prevented by verapamil in frogs. Brain Res. 510, 289ā€“295.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  7. Aschner M. and Aschner J. (1991) Manganese neurotoxicity: cellular effects and blood brain barrier transport. Neurosci. Biobehav. Rev. 15, 333ā€“340.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  8. Brurok H., Schjitt J., Berg K., Karlsson J. O., and Jynge P. (1997) Manganese and the heart: acute cardiodepression and myocardial accumulation of manganese. Acta Physiol. Scand. 159, 33ā€“40.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  9. Chandra S. V., Shukla G. S., Srivastava R. S., Singh H., and Gupta V. P. (1981) An exploratory study of manganese exposure to welders. Clin. Toxicol. 18, 407ā€“416.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  10. Pal P. K., Samii A., and Calne D. B. (1999) Manganese neurotoxicity: a review of clinical features, imaging and pathology. Neurotoxicology 20, 227ā€“238.

    PubMedĀ  CASĀ  Google ScholarĀ 

  11. McMillan D. E. (1999) A brief history of the neurobehavioral toxicity of manganese: some unanswered questions. Neurotoxicology 20, 499ā€“507.

    PubMedĀ  CASĀ  Google ScholarĀ 

  12. Bird E. D., Anton A. H., and Bullock B. (1984) The effect of manganese inhalation on basal ganglia dopamine concentrations in rhesus monkey. Neurotoxicology 5, 59ā€“65.

    PubMedĀ  CASĀ  Google ScholarĀ 

  13. Morganti J. B., Lown B. A., Stineman C. H., Dā€™Agostino R. B., and Massaro E. J. (1985) Uptake, distribution and behavioral effects of inhalation exposure to manganese (MnO2) in the adult mouse. Neurotoxicology 6, 1ā€“15.

    PubMedĀ  CASĀ  Google ScholarĀ 

  14. TjƤlve H., Mejare C., and Borg-Neczak K. (1995) Uptake of manganese and cadmium from the nasal mucosa into the central nervous system via olfactory pathways in rats. Pharm. Toxicol. 77, 23ā€“31.

    ArticleĀ  Google ScholarĀ 

  15. TjƤlve H., Henriksson J., Tallkvist J., Larsson B., and Lindquist N. (1996) Uptake of manganese and cadmium from the nasal mucosa into the central nervous system via olfactory pathways in rats. Pharm. Toxicol. 79, 347ā€“356.

    ArticleĀ  Google ScholarĀ 

  16. Sloot W. N. and Gramsbergen J. P. (1994) Axonal transport of manganese and its relevance to selective neurotoxicity in the rat basal ganglia. Brain Res. 657, 124ā€“132.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  17. Merritt J. E., Jacob R., and Hallam T. J. (1989) Use of manganese to discriminate between calcium influx and mobilization from internal stores in stimulated human neutrophils. J. Biol. Chem. 25, 1522ā€“1527.

    Google ScholarĀ 

  18. Cory D. A., Schwartzentruber D. J., and Mock B. H. (1987) Ingested manganese chloride as a contrast agent for magnetic resonance imaging. Magn. Reson. Imaging 5, 65ā€“70.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  19. Geraldes C. F., Sherry A. D., Brown R. D. 3rd, and Koenig S. H. (1986) Magnetic field dependence of solvent proton relaxation rates induced by Gd3+ and Mn2+ complexes of various polyaza macrocyclic ligands: implications for NMR imaging. Magn. Reson. Med. 3, 242ā€“250.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  20. Mendonca-Dias M. H., Gaggelli E., and Lauterbur P. C. (1983) Paramagnetic contrast agents in nuclear magnetic resonance medical imaging. Semin. Nucl. Med. 13, 364ā€“376.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  21. Fornasiero D., Bellen J. C., Baker R. J., and Chatterton B. E. (1987) Paramagnetic complexes of manganese(II), iron(III), and gadolinium(III) as contrast agents for magnetic resonance imaging. The influence of stability constants on the biodistribution of radioactive aminopolycarboxylate complexes. Invest. Radiol. 22, 322ā€“327.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  22. Pautler R. G., Silva A. C., and Koretsky A. P. (1998) In vivo neuronal tract tracing using manganese-enhanced magnetic resonance imaging. Magn. Reson. Med. 40, 740ā€“748.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  23. Takeda A., Ishiwatari A., and Okada S. (1998) In vivo stimulation-induced release of manganese in rat amygdala. Brain Res. 811, 147ā€“151.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  24. Pautler R. G. and Koretsky A. P. (2001) Tracing odor induced activation in the olfactory bulbs of mice using manganese enhanced magnetic resonance imaging (MEMRI). Neuroimage 16, 441ā€“448.

    ArticleĀ  Google ScholarĀ 

  25. Pautler R. G., Mongeau R., and Jacobs R. E. (2003) In vivo trans-synaptic tract tracing from the murine striatum and amygdala utilizing manganese enhanced MRI (MEMRI). Magn. Reson. Med. 50, 33ā€“39.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  26. Watanabe T., Michaelis T., and Frahm J. (2001) Mapping of retinal projections in the living rat using high-resolution 3D gradient-echo MRI with Mn2+-induced contrast. Magnet. Reson. Med. 46, 424ā€“429.

    ArticleĀ  CASĀ  Google ScholarĀ 

  27. Saleem K. S., Pauls J. M., Augath M., et al. (2002) Magnetic resonance imaging of neuronal connections in the macaque monkey. Neuron 34, 685ā€“700.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  28. Van der Linden A., Verhoye M., Van Meir V., et al. (2002) In vivo manganeseenhanced magnetic resonance imaging reveals connections and functional properties of the songbird vocal control system. Neuroscience 112, 467ā€“474.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  29. Tindemans I., Verhoye M., Balthazart J., and Van Der Linden A. (2003) In vivo dynamic ME-MRI reveals differential functional responses of RA-and area X-projecting neurons in the HVC of canaries exposed to conspecific song. Eur. J. Neurosci. 18, 3352ā€“3360.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  30. Hu T. C. C., Pautler R. G., MacGowan G. A., and Koretsky A. P. (2001) Manganese MRI enhancement of the mouse heart during changes in ionotropy. Magn. Reson. Med. 46, 884ā€“890.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  31. 31.-Pautler R. G., Olson C., Williams D. S., Ho C., and Koretsky A. P. (1990) Mn2+ enhanced MRI (MEMRI) in vivo tract tracing in mouse mutants and nonhuman primates. Proc. Intl. Soc. Mag. Reson. Med. 7, 448.

    Google ScholarĀ 

  32. Ryu S., Brown S. L., Kolozsvary A., Ewing J. R., and Kim J. H. (2002) Noninvasive detection of radiation-induced optic neuropathy by manganese-enhanced MRI. Radiat. Res. 157, 500ā€“505.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  33. Watanabe T., Michaelis T., and Frahm J. (2001), Mapping of retinal projections in the living rat using high-resolution 3D gradient-echo MRI with Mn2+-induced contrast. Magn. Reson. Med. 46, 424ā€“429.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  34. Lublin F. D., Maurer P. H., Berry R. G., and Tippett D. (1981) Delayed, relapsing experimental allergic encephalomyelitis in mice. J. Immunol. 126, 819ā€“822.

    PubMedĀ  CASĀ  Google ScholarĀ 

  35. 35.-Krombach G. A., Saeed M., Higgins C. B., Novikov V., and Wendland M. F. (2004) Contrast-enhanced MR delineation of stunned myocardium with administration of MnCl(2) in rats. Radiology 230, 183ā€“190.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2006 Humana Press Inc.

About this protocol

Cite this protocol

Pautler, R.G. (2006). Biological Applications of Manganese-Enhanced Magnetic Resonance Imaging. In: Prasad, P.V. (eds) Magnetic Resonance Imaging. Methods in Molecular Medicineā„¢, vol 124. Humana Press. https://doi.org/10.1385/1-59745-010-3:365

Download citation

  • DOI: https://doi.org/10.1385/1-59745-010-3:365

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-397-8

  • Online ISBN: 978-1-59745-010-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics