Skip to main content

Hyperpolarized Gas and Oxygen-Enhanced Magnetic Resonance Imaging

  • Protocol
Magnetic Resonance Imaging

Part of the book series: Methods in Molecular Medicineā„¢ ((MIMM,volume 124))

Abstracts

Unlike any other organ, imaging of lungs with magnetic resonance faces unique challenges owing to the complex microstructure and presence of gas-tissue interfaces. With the evolution of faster and stronger gradient systems leading to ultrafast imaging with ultrashort echo times, pulmonary magnetic resonance imaging (MRI) is no longer considered a technical challenge. In terms of functional evaluation, lungs are also associated with a unique function, viz. ventilation. Evaluation of ventilation is feasible with MRI either by using hyperpolarized noble gases or in an indirect fashion by performing oxygen-enhanced MRI. This chapter will provide an overview of these two methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Amis T. C., Crawford A. B., Davison A., and Engel L. A. (1990) Distribution of inhaled 99mTechnetium labelled ultrafine carbon particle aerosol (Technegas) in human lungs. Eur. Respir. J. 3, 679ā€“685.

    PubMedĀ  CASĀ  Google ScholarĀ 

  2. Hayes M. and Taplin G. V. (1980) Lung imaging with radioaerosols for the assessment of airway disease. Semin. Nucl. Med. 10, 243ā€“251.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  3. Tajik J. K., Chon D., Won C., Tran B. Q., and Hoffman E. A. (2002) Subsecond multisection CT of regional pulmonary ventilation. Acad. Radiol. 9, 130ā€“146.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  4. Case T. A., Durney C. H., Ailion D. C., Cutillo A. G., and Morris A. H. (1987) A mathematical model of diamagnetic line broadening in lung tissue and similar heterogeneous systems: calculations and measurements. J. Magn. Reson. 73, 304ā€“314.

    Google ScholarĀ 

  5. Durney C. H., Bertolina J., Ailion D. C., et al. (1989) Calculation and interpretation of inhomogeneous line broadening in models of lungs and other heterogeneous structures. J. Magn. Reson. 85, 554ā€“570.

    Google ScholarĀ 

  6. Middleton H., Black R. D., Saam B., et al. (1995) MR imaging with hyperpolarized 3He gas. Magn. Reson. Med. 33, 271ā€“275.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  7. Bachert P., Schad L. R., Bock M., et al. (1996) Nuclear magnetic resonance imaging of airways in humans with use of hyperpolarized 3He. Magn. Reson. Med. 36, 192ā€“196.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  8. Mugler J. P., 3rd, Driehuys B., Brookeman J. R., et al. (1997) MR imaging and spectroscopy using hyperpolarized 129Xe gas: preliminary human results. Magn. Reson. Med. 37, 809ā€“815.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  9. Edelman R. R., Hatabu H., Tadamura E., Li W., and Prasad P. V. (1996) Noninvasive assessment of regional ventilation in the human lung using oxygen enhanced magnetic resonance imaging. Nat. Med. 2, 1236ā€“1239.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  10. Chen Q., Jakob P. M., Griswold M. A., Levin D. L., Hatabu H., and Edelman R. R. (1998) Oxygen enhanced MR ventilation imaging of the lung. MAGMA 7, 153ā€“161.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  11. Albert M. S., Cates G. D., Driehuys B., et al. (1994) Biological magnetic resonance imaging using laser-polarized 129Xe. Nature 370, 199ā€“201.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  12. Wagshul M. E., Button T. M., Li H. F., et al. (1996) In vivo MR imaging and spectroscopy using hyperpolarized 129Xe. Magn. Reson. Med. 36, 183ā€“191.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  13. Walker T. G. and Happer W. (1997) Spin exchange optical pumping of noblegas nuclei. Rev. Mod. Phys. 69, 629ā€“642.

    ArticleĀ  CASĀ  Google ScholarĀ 

  14. Happer W. and van Wijngaarden W. A. (1987) An optical pumping primer. Hyperfine Interact. 38, 435ā€“470.

    ArticleĀ  CASĀ  Google ScholarĀ 

  15. Appelt S., Ben-Amar Baranga A., Erickson C. J., Romalis M. V., Young A. R., and Happer W. (1998) Theory of spin-exchange optical pumping of 3He and 129Xe. Phys. Rev. A 58, 1412ā€“1439.

    ArticleĀ  CASĀ  Google ScholarĀ 

  16. Colegrove F. D., Schearer L. D., and Walters G. K. (1963) Polarization of 3He gas by optical pumping. Phys. Rev. 132, 2561ā€“2572.

    ArticleĀ  CASĀ  Google ScholarĀ 

  17. Gentile T. R. and McKeown R. D. (1993) Spin-polarizing 3He nuclei with an arclamp-pumped neodymium-doped lanthanum magnesium hexaluminate laser. Phys. Rev. A 47, 456ā€“467.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  18. Stoltz E., Meyerhoff M., Bigelow N., Leduc M., Nacher P. J., and Tastevin G. (1996) High nuclear polarization in 3He and 3He-4He gas mixtures by optical pumping with a laser diode. Appl. Phys. B 63, 629ā€“633.

    CASĀ  Google ScholarĀ 

  19. Saam B., Happer W., and Middleton H. (1995) Nuclear relaxation of 3He in the presence of O2. Phys. Rev. A 52, 862ā€“865.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  20. Moller H. E., Chen X. J., Saam B., et al. (2002) MRI of the lungs using hyperpolarized noble gases. Magn. Reson. Med. 47, 1029ā€“1051.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  21. Black R. D., Middleton H. L., Cates G. D., et al. (1996) In vivo He-3 MR images of guinea pig lungs. Radiology 199, 867ā€“870.

    PubMedĀ  CASĀ  Google ScholarĀ 

  22. Moller H. E., Chen X. J., Chawla M. S., et al. (1999) Sensitivity and resolution in 3D NMR microscopy of the lung with hyperpolarized noble gases. Magn. Reson. Med. 41, 800ā€“808.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  23. Mugler J. P., 3rd. (1998) Optimization of gradient-echo sequences for hyperpolarized noble gases MRI. International Society of Magnetic Resonance in Medicine Annual Scientific Meeting, Sydney, Australia.

    Google ScholarĀ 

  24. Saam B., Yablonskiy D. A., Gierada D. S., and Conradi M. S. (1999) Rapid imaging of hyperpolarized gas using EPI. Magn. Reson. Med. 42, 507ā€“514.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  25. Kauczor H. U., Hofmann D., Kreitner K. F., et al. (1996) Normal and abnormal pulmonary ventilation: visualization at hyperpolarized He-3 MR imaging. Radiology 201, 564ā€“568.

    PubMedĀ  CASĀ  Google ScholarĀ 

  26. MacFall J. R., Charles H. C., Black R. D., et al. (1996) Human lung air spaces: potential for MR imaging with hyperpolarized He-3. Radiology 200, 553ā€“558.

    PubMedĀ  CASĀ  Google ScholarĀ 

  27. Altes T. A., Powers P. L., Knight-Scott J., et al. (2001) Hyperpolarized 3He MR lung ventilation imaging in asthmatics: preliminary findings. J. Magn. Reson. Imaging 13, 378ā€“384.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  28. Johnson G. A., Cates G., Chen X. J., et al. (1997) Dynamics of magnetization in hyperpolarized gas MRI of the lung. Magn. Reson. Med. 38, 66ā€“71.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  29. Chen X. J., Chawla M. S., Hedlund L. W., Moller H. E., MacFall J. R., and Johnson G. A. (1998) MR microscopy of lung airways with hyperpolarized 3He. Magn. Reson. Med. 39, 79ā€“84.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  30. Rupert K., Brookeman J. R., and Mugler J. P., 3rd. (1998) Real-time MR imaging of pulmonary gas flow dynamics with hyperpolarized 3He. International Society of Magnetic Resonance in Medicine Annual Scientific Meeting, Sydney, Australia.

    Google ScholarĀ 

  31. Gierada D. S., Saam B., Yablonskiy D., Cooper J. D., Lefrak S. S., and Conradi M. S. (2000) Dynamic echo planar MR imaging of lung ventilation with hyperpolarized (3)He in normal subjects and patients with severe emphysema. NMR Biomed. 13, 176ā€“181.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  32. Salerno M., Altes T. A., Brookeman J. R., de Lange E. E., and Mugler J. P., 3rd. (2001) Dynamic spiral MRI of pulmonary gas flow using hyperpolarized (3)He: preliminary studies in healthy and diseased lungs. Magn. Reson. Med. 46, 667ā€“677.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  33. Saam B. T., Yablonskiy D. A., Kodibagkar V. D., et al. (2000) MR imaging of diffusion of (3)He gas in healthy and diseased lungs. Magn. Reson. Med. 44, 174ā€“179.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  34. Salerno M., Brookeman J. R., de Lange E. E., Knight-Scott J., and Mugler J. P., 3rd. (2000) Detection of regional microstructural changes in lung in emphysema using hyperpolarized 3He diffusion MRI. International Society of Magnetic Resonance in Medicine Annual Scientific Meeting, Denver, CO.

    Google ScholarĀ 

  35. Deninger A. J., Eberle B., Ebert M., et al. (2000) (3)he-MRI-based measurements of intrapulmonary p(O2) and its time course during apnea in healthy volunteers: first results, reproducibility, and technical limitations. NMR Biomed. 13, 194ā€“201.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  36. Deninger A. J., Eberle B., Ebert M., et al. (1999) Quantification of regional intrapulmonary oxygen partial pressure evolution during apnea by (3)He MRI. J. Magn. Reson. 141, 207ā€“216.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  37. Alsop D. C., Hatabu H., Bonnet M., Listerud J., and Gefter W. (1995) Multislice, breathhold imaging of the lung with submillisecond echo times. Magn. Reson. Med. 33, 678ā€“682.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  38. Bergin C. J., Pauly J. M., and Macovski A. (1991) Lung parenchyma: projection reconstruction MR imaging. Radiology 179, 777ā€“781.

    PubMedĀ  CASĀ  Google ScholarĀ 

  39. Mayo J. R., MacKay A., and Muller N. L. (1992) MR imaging of the lungs: value of short TE spin-echo pulse sequences. Am. J. Roentgenol. 159, 951ā€“956.

    CASĀ  Google ScholarĀ 

  40. Mai V. M., Knight-Scott J., Edelman R. R., Chen Q., Keilholz-George S., and Berr S. S. (2000) 1H magnetic resonance imaging of human lung using inversion recovery turbo spin echo. J. Magn. Reson. Imaging 11, 616ā€“621.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  41. Mai V. M., Knight-Scott J., and Berr S. S. (1999) Improved visualization of the human lung in 1H MRI using multiple inversion recovery for simultaneous suppression of signal contributions from fat and muscle. Magn. Reson. Med. 41, 866ā€“870.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  42. Mai V. M., Chen Q., Li W., Hatabu H., and Edelman R. R. (2000) Effect of respiratory phases on MR lung signal intensity and lung conspicuity using segmented multiple inversion recovery turbo spin echo (MIR-TSE). Magn. Reson. Med. 43, 760ā€“763.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  43. Chiarotti G., Cristiani G., and Bliulotto L. (1955) Proton relaxation in pure liquids and in liquids containing paramagnetic gases in solution. Nuovo Cimento 1, 863ā€“873.

    ArticleĀ  Google ScholarĀ 

  44. Chen Q., Levin D. L., Mai V. M., Edelman R. R., and Hatabu H. (1999) Magnetic resonance imaging using oxygen as a T1 contrast agent. International Society of Magnetic Resonance in Medicine Annual Scientific Meeting, Philadelphia, PA.

    Google ScholarĀ 

  45. Young I. R., Clarke G. J., Bailes D. R., Pennock J. M., Doyle F. H., and Bydder G. M. (1981) Enhancement of relaxation rate with paramagnetic contrast agents in NMR imaging. J. Comput. Tomogr. 5, 543ā€“547.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  46. Mai V. M., Chen Q., Bankier A. A., and Edelman R. R. (2000) Multiple inversion recovery MR subtraction imaging of human ventilation from inhalation of room air and pure oxygen. Magn. Reson. Med. 43, 913ā€“916.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  47. Loffler R., Muller C. J., Peller M., et al. (2000) Optimization and evaluation of the signal intensity change in multisection oxygen-enhanced MR lung imaging. Magn. Reson. Med. 43, 860ā€“866.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  48. Muller C. J., Loffler R., Deimling M., Peller M., and Reiser M. (2001) MR lung imaging at 0.2 T with T1-weighted true FISP: native and oxygen-enhanced. J. Magn. Reson. Imaging 14, 164ā€“168.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  49. Mai V. M., Tutton S., Prasad P. V., et al. (2003) Computing oxygen-enhanced ventilation maps using correlation analysis. Magn. Reson. Med. 49, 591ā€“594.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  50. Bandettini P. A., Wong E. C., Hinks R. S., Tikofsky R. S., and Hyde J. S. (1992) Time course EPI of human brain function during task activation. Magn. Reson. Med. 25, 390ā€“397.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  51. Bandettini P. A., Jesmanowicz A., Wong E. C., and Hyde J. S. (1993) Processing strategies for time-course data sets in functional MRI of the human brain. Magn. Reson. Med. 30, 161ā€“173.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  52. Stock K. W., Chen Q., Morrin M., Hatabu H., and Edelman R. R. (1999) Oxygen-enhanced magnetic resonance ventilation imaging of the human lung at 0.2 and 1.5 T. J. Magn. Reson. Imaging 9, 838ā€“841.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  53. Mai V. M., Chen Q., Bankier A. A., Hatabu H., and Edelman R. R. (2000) Mapping T1 changes in oxygen-enhanced ventilation imaging in the human lung using MRI. International Society of Magnetic Resonance in Medicine Annual Scientific Meeting, Denver, CO.

    Google ScholarĀ 

  54. Jakob P. M., Hillenbrand C. M., Wang T., Schultz G., Hahn D., and Haase A. (2001) Rapid quantitative lung (1)H T(1) mapping. J. Magn. Reson. Imaging 14, 795ā€“799.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  55. Nakagawa T., Sakuma H., Murashima S., Ishida N., Matsumura K., and Takeda K. (2001) Pulmonary ventilation-perfusion MR imaging in clinical patients. J. Magn. Reson. Imaging 14, 419ā€“424.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  56. Mai V. M., Chen Q., Gladstone S., Li W., Hatabu H., and Edelman R. R. (1999) Noninvasive ventilation-perfusion MR imaging using oxygen and FAIRER in humans and in a porcine model of airway obstruction. International Society of Magnetic Resonance in Medicine Annual Scientific Meeting, Philadelphia, PA.

    Google ScholarĀ 

  57. Ohno Y., Hatabu H., Takenaka D., Adachi S., Van Cauteren M., and Sugimura K. (2001) Oxygen-enhanced MR ventilation imaging of the lung: preliminary clinical experience in 25 subjects. Am. J. Roentgenol. 177, 185ā€“194.

    CASĀ  Google ScholarĀ 

  58. Muller C. J., Schwaiblmair M., Scheidler J., et al. (2002) Pulmonary diffusing capacity: assessment with oxygen-enhanced lung MR imaging preliminary findings. Radiology 222, 499ā€“506.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  59. Ohno Y., Hatabu H., Takenaka D., Van Cauteren M., Fujii M., and Sugimura K. (2002) Dynamic oxygen-enhanced MRI reflects diffusing capacity of the lung. Magn. Reson. Med. 47, 1139ā€“1144.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  60. Krogh A. and Lindhard J. (1917) The volume of the dead space in breathing and the mixing of gases in the lungs of man. J. Physiol. 51, 59ā€“90.

    PubMedĀ  CASĀ  Google ScholarĀ 

  61. Haldane J. S. (1922) Respiration, Yale University Press, New Haven, CT.

    Google ScholarĀ 

  62. Fenn W. O., Rahn H., and Otis A. B. (1946) A theoretical study of the composition of alveolar air at altitude. Am J. Physiol. 146, 637ā€“653.

    PubMedĀ  Google ScholarĀ 

  63. Riley R. L. and Cournand A. (1949) &quote;Ideal&quote; alveolar air and the analysis of ventilation-perfusion relationships in the lungs. J. Appl. Physiol. 825ā€“847.

    Google ScholarĀ 

  64. West J. B. and Wagner P. D. (1991) Ventilation-perfusion relationships, in The Lung: Scientific Foundations (Crystal R. G., West J. B., Barnes P. J., Cherniack N. S., and Weibel E. R., eds.), Raven, New York, NY, pp. 1289ā€“1305.

    Google ScholarĀ 

  65. Chen Q., Levin D. L., Kim D., et al. (1999) Pulmonary disorders: ventilationperfusion MR imaging with animal models. Radiology 213, 871ā€“879.

    PubMedĀ  CASĀ  Google ScholarĀ 

  66. Mai V. M., Bankier A. A., Prasad P. V., et al. (2001) MR ventilation-perfusion imaging of human lung using oxygen-enhanced and arterial spin labeling techniques. J. Magn. Reson. Imaging 14, 574ā€“579.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  67. Mai V. M., Liu B., Polzin J. A., et al. (2002) Ventilation-perfusion ratio of signal intensity in human lung using oxygen-enhanced and arterial spin labeling techniques. Magn. Reson. Med. 48, 341ā€“350.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  68. Hatabu H., Gaa J., Kim D., Li W., Prasad P. V., and Edelman R. R. (1996) Pulmonary perfusion: qualitative assessment with dynamic contrast-enhanced MRI using ultra-short TE and inversion recovery turbo FLASH. Magn. Reson. Med. 36, 503ā€“508.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  69. Meaney J. F., Weg J. G., Chenevert T. L., Stafford-Johnson D., Hamilton B. H., and Prince M. R. (1997) Diagnosis of pulmonary embolism with magnetic resonance angiography. N. Engl. J. Med. 336, 1422ā€“1427.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  70. Amundsen T., Kvaerness J., Jones R. A., et al. (1997) Pulmonary embolism: detection with MR perfusion imaging of lung-a feasibility study. Radiology 203, 181ā€“185.

    PubMedĀ  CASĀ  Google ScholarĀ 

  71. Detre J. A., Leigh J. S., Williams D. S., and Koretsky A. P. (1992) Perfusion imaging. Magn. Reson. Med. 23, 37ā€“45.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  72. Edelman R. R., Siewert B., Darby D. G., et al. (1994) Qualitative mapping of cerebral blood flow and functional localization with echo-planar MR imaging and signal targeting with alternating radio frequency. Radiology 192, 513ā€“520.

    PubMedĀ  CASĀ  Google ScholarĀ 

  73. Kwong K. K., Chesler D. A., Weisskoff R. M., et al. (1995) MR perfusion studies with T1-weighted echo planar imaging. Magn. Reson. Med. 34, 878ā€“887.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  74. Kim S. G. (1995) Quantification of relative cerebral blood flow change by flowsensitive alternating inversion recovery (FAIR) technique: application to functional mapping. Magn. Reson. Med. 34, 293ā€“301.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  75. Mai V. M., Hagspiel K. D., Christopher J. M., et al. (1999) Perfusion imaging of the human lung using flow-sensitive alternating inversion recovery with an extra radiofrequency pulse (FAIRER). Magn. Reson. Imaging 17, 355ā€“361.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  76. Mai V. M., and Berr S. S. (1999) MR perfusion imaging of pulmonary parenchyma using pulsed arterial spin labeling techniques: FAIRER and FAIR. J. Magn. Reson. Imaging 9, 483ā€“487.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  77. Roberts D. A., Gefter W. B., Hirsch J. A., et al. (1999) Pulmonary perfusion: respiratory-triggered three-dimensional MR imaging with arterial spin tagging-preliminary results in healthy volunteers. Radiology 212, 890ā€“895.

    PubMedĀ  CASĀ  Google ScholarĀ 

  78. Silvennoinen M. J., Kettunen M. I., and Kauppinen R. A. (2003) Effects of hematocrit and oxygen saturation level on blood spin-lattice relaxation. Magn. Reson. Med. 49, 568ā€“571.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2006 Humana Press Inc.

About this protocol

Cite this protocol

Mai, V.M. (2006). Hyperpolarized Gas and Oxygen-Enhanced Magnetic Resonance Imaging. In: Prasad, P.V. (eds) Magnetic Resonance Imaging. Methods in Molecular Medicineā„¢, vol 124. Humana Press. https://doi.org/10.1385/1-59745-010-3:323

Download citation

  • DOI: https://doi.org/10.1385/1-59745-010-3:323

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-397-8

  • Online ISBN: 978-1-59745-010-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics