Skip to main content

Chloroplast Genetic Engineering Via Organogenesis or Somatic Embryogenesis

  • Protocol
Arabidopsis Protocols

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 323))

Abstract

Chloroplast genetic engineering offers a number of unique advantages, including high-level transgene expression, multigene engineering in a single transformation event, transgene containment via maternal inheritance, lack of gene silencing, position and pleiotropic effects and undesirable foreign DNA. More than 40 transgenes have been stably integrated and expressed via the tobacco chloroplast genome to confer desired agronomic traits or express high levels of vaccine antigens and biopharmaceuticals. Despite such significant progress, this technology has not been extended to other important plant species. For example, Arabidopsis may be an ideal model system for chloroplast functional genomics. The employment of chloroplast transformation technology in Arabidopsis has been hampered by the lack of an efficient and reproducible protocol that provides fertile chloroplast transgenic plants. Transformation of the Arabidopsis chloroplast genome was achieved via organogenesis but the efficiency was at least a 100-fold lower than in tobacco and had the drawback of polyploidy in the leaf tissue that resulted in sterile transgenic plants. This problem can be overcome by adapting procedures that are now available to regenerate plants from both diploid and tetraploid explants via callus. In addition, it is feasible to regenerate Arabidopsis via somatic embryogenesis. Recent breakthroughs in highly efficient plastid transformation of recalcitrant crops such as cotton and soybean have opened the possibility of engineering Arabidopsis plastid genome via somatic embryogenesis. Therefore, protocols of recent improvements in tissue culture, DNA delivery, and the novel vector designs are provided here in order to achieve highly efficient plastid transformation in Arabidopsis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Daniell, H. (2002) Molecular strategies for gene containment in transgenic crops. Nat. Biotechnol. 20, 581–586.

    Article  CAS  PubMed  Google Scholar 

  2. Daniell, H., Khan, M. S., and Allison, L. (2002) Milestones in chloroplast genetic engineering: an environmentally friendly era in biotechnology. Trends Plant Sci. 7, 84–91.

    Article  CAS  PubMed  Google Scholar 

  3. Daniell, H., Datta, R., Varma, S., Gray, S., and Lee, S. B. (1998) Containment of herbicide resistance through genetic engineering of the chloroplast genome. Nat. Biotechnol. 16, 345–348.

    Article  CAS  PubMed  Google Scholar 

  4. Kota, M., Daniell, H., Varma, S., Garczynski, S. F., Gould, F., and William, M. J. (1999) Overexpression of the Bacillus thuringiensis (Bt) Cry2Aa2 protein in chloroplasts confers resistance to plants against susceptible and Bt-resistant insects. Proc. Natl. Acad. Sci. USA 96, 1840–1845.

    Article  CAS  PubMed  Google Scholar 

  5. DeGray, G., Kanniah, R., Franzine, S., John, S., and Daniell, H. (2001) Expression of an antimicrobial peptide via the chloroplast genome to control phytopathogenic bacteria and fungi. Plant Physiol. 127, 852–862.

    Article  CAS  PubMed  Google Scholar 

  6. Lee, S. B., Kwon, H. B., Kwon S. J., et al. (2003) Accumulation of trehalose within transgenic chloroplasts confers drought tolerance. Mol. Breeding 11, 1–13.

    Article  CAS  Google Scholar 

  7. Kumar, S., Dhingra, A., and Daniell, H. (2004) Plastid expressed betaine aldehyde dehydrogenase gene in carrot cultured cells, roots and leaves confers enhanced salt tolerance. Plant Physiol. 136, 2843–2854.

    Article  CAS  PubMed  Google Scholar 

  8. Ruiz, O. N., Hussein, H., Terry, N., and Daniell, H. (2003) Phytoremediation of organomercurial compounds via chloroplast genetic engineering. Plant Physiol. 132, 1344–1352.

    Article  CAS  PubMed  Google Scholar 

  9. Daniell, H., Lee, S. B., Panchal, T., and Wiebe, P. O. (2001) Expression of the native cholera toxin B subunit gene and assembly as functional oligomers in transgenic tobacco chloroplasts. J. Mol Biol. 311, 1001–1009.

    Article  CAS  PubMed  Google Scholar 

  10. Watson, J., Koya V., Leppla S., and Daniell, H. (2004) Expression of Bacillus anthracis protective antigen in transgenic chloroplasts of tobacco, a non-food/feed crop. Vaccine 22, 4374–4384.

    Article  CAS  PubMed  Google Scholar 

  11. Molina, A., Hervás-Stubbs, S., Daniell, H., Mingo-Castel, A., and Veramendi J. (2004) High-yield expression of a viral peptide animal vaccine in transgenic tobacco chloroplasts. Plant Biotech. J. 2, 141–153.

    Article  CAS  Google Scholar 

  12. Daniell, H., Muthukumar, B., and Lee, S. B. (2001) Marker tree transgenic plants: engineering the chloroplast genome without the use of antibiotic selection. Curr. Genet. 39, 109–116.

    Article  CAS  PubMed  Google Scholar 

  13. Corneille, S., Lutz, K., Svab, Z., and Maliga, P. (2001) Efficient elimination of selectable marker genes from the plastid genome by the CRE-lox site-specific recombination system. Plant J. 27, 171–178.

    Article  CAS  PubMed  Google Scholar 

  14. Iamtham, S. and Day, A. (2000) Removal of antibiotic resistance genes from transgenic tobacco plastids. Nat. Biotechnol. 18, 1172–1176.

    Article  CAS  PubMed  Google Scholar 

  15. Klaus, S. M. J., Huang, F. C., Golds, T. J., and Koop, H. U. (2004) Generation of marker-free plastid transformants using a transiently cointegrated selection gene. Nat. Biotechnol. 22, 225–229.

    Article  CAS  PubMed  Google Scholar 

  16. Fernandez-San Millan, A., Mingo-Castel, A., and Daniell, H. (2003) A chloroplast transgenic approach to hyper-express and purify human serum albumin, a protein highly susceptible to proteolytic degradation. Plant Biotechnol. J. 1, 71–79.

    Article  CAS  PubMed  Google Scholar 

  17. Leelavathi, S. and Reddy, V. S. (2003) Chloroplast expression of His-tagged GUS-fusions: a general strategy to overproduce and purify foreign proteins using transplastomic plants as bioreactors. Mol. Breeding 11, 49–58.

    Article  CAS  Google Scholar 

  18. Daniell, H., Carmona-Sanchez, O., and Burns, B. B. (2004) Chloroplast derived antibodies, biopharmaceuticals and edible vaccines, in Molecular Farming Fischer, R. and Schillberg, S. (eds.), WILEY-VCH Verlag, Weinheim, Germany, pp.113–133.

    Chapter  Google Scholar 

  19. Chebolu, S. and Daniell, H. (2005) Chloroplast derived vaccine antigens and biopharmaceuticals: expression, folding, assembly and functionality. Curr. Trends Microbiol. Immunol., in press.

    Google Scholar 

  20. DeCosa, B., Moar, W., Lee, S. B., Miller, M. and Daniell, H. (2001) Overexpression of the Bt Cry2Aa2 operon in chloroplasts leads to formation of insecticidal crystals. Nat. Biotechnol. 19, 71–74.

    Article  CAS  Google Scholar 

  21. Daniell, H. and McFadden, B. A. (1987) Uptake and expression of bacterial and cyanobacterial genes by isolated cucumber etioplasts. Proc. Natl. Acad. Sci. USA 84, 6349–6353.

    Article  CAS  PubMed  Google Scholar 

  22. Sidorov, V. A., Kasten, D., Pang, S. Z., Hajdukiewicz, P. T. J., Staub, J. M., and Nehra, N. S. (1999) Stable chloroplast transformation in potato: use of green fluorescent protein as a plastid marker. Plant J. 19, 209–216.

    Article  CAS  PubMed  Google Scholar 

  23. Ruf, S., Hermann, M., Berger, I. J., Carrer, H., and Bock, R. (2001) Stable genetic transformation of tomato plastids and expression of a foreign protein in fruit. Nat. Biotechnol. 19, 870–875.

    Article  CAS  PubMed  Google Scholar 

  24. Kumar, S., Dhingra, A., and Daniell, H. (2004) Stable transformation of the cotton plastid genome and maternal inheritance of transgenes. Plant Mol. Biol. 56, 203–216.

    Article  CAS  PubMed  Google Scholar 

  25. Dufourmantel, N., Pelissier, B., Garçon, F., Peltier, J. M., and Tissot, G. (2004) Generation of fertile transplastomic soybean. Plant Mol Biol. 55, 727–741.

    Article  Google Scholar 

  26. Palmer, J. D. (1985) Comparative organization of chloroplast genomes. Ann. Rev. Genet. 19, 325–354.

    Article  CAS  PubMed  Google Scholar 

  27. Lilly, J. W., Havey, M. J., Jackson, S. A., and Jiang, J. M. (2001) Cytogenomic analyses reveal the structural plasticity of the chloroplast genome in higher plants. Plant Cell 13, 245–254.

    Article  CAS  PubMed  Google Scholar 

  28. Kunnimalaiyaan M. and Nielsen, B. L. (1997) Chloroplast DNA replication: mechanism, enzymes and replication origins. J. Plant Biochem. Biotechnol. 6, 1–7.

    CAS  Google Scholar 

  29. Kunnimalaiyaan, M. and Nielsen, B. L. (1997) Fine mapping of replication origins (oriA and oriB) in Nicotiana tabacum chloroplast DNA. Nucleic Acids Res. 25, 3681–3686.

    Article  CAS  PubMed  Google Scholar 

  30. Daniell, H., Vivekananda, J., Nielsen, B. L., Ye, G. N., Tewari, K. K., and Sanford, J. C. (1990) Transient foreign gene expression in chloroplasts of cultured tobacco cells after biolistic delivery of chloroplast vectors. Proc. Natl. Acad. Sci. USA. 87, 88–92.

    Article  CAS  PubMed  Google Scholar 

  31. Guda, C., Lee, S. B., and Daniell, H. (2000) Stable expression of biodegradable protein based polymer in tobacco chloroplasts. Plant Cell Rep. 19, 257–262.

    Article  CAS  Google Scholar 

  32. Daniell, H., Cohill, P., Kumar, S., and Dufourmantel, N. (2004) Chloroplast genetic engineering, in Molecular biology and biotechnology of plant organelles (Daniell, H. and Chase, C., eds.), The Netherlands, Kluwer Academic Publishers, pp. 423–468.

    Google Scholar 

  33. Sikdar, S. R., Serino, G., Chaudhuri, S., and Maliga, P. (1998) Plastid transformation in Arabidopsis. Plant Cell Rep. 18, 20–24.

    Article  CAS  Google Scholar 

  34. Daniell, H. (1997) Transformation and foreign gene expression in plants mediated by microprojectile bombardment. Methods Mol. Biol. 62, 453–488.

    Google Scholar 

  35. Kumar, S. and Daniell, H. (2004) Chloroplast genetic engineering for medical molecular farming. Methods Mol. Biol. 267, 365–383.

    CAS  PubMed  Google Scholar 

  36. Daniell, H. Ruiz, O. N., and Dhingra, A. (2004) Chloroplast genetic engineering to improve agronomic traits. Methods Mol. Biol. 286, 111–137.

    Google Scholar 

  37. Fras, A. and Maluszynska, J. (2003) Regeneration of diploid and tetraploid plants of Arabidopsis thaliana via callus. Acta Biolog. Cracoviensia Ser. Bot. 45, 145–152.

    Google Scholar 

  38. Gaj, M. D. (2004) Factors influencing somatic embryogenesis induction and plant regeneration with particular reference to Arabidopsis thaliana (L.) Heynh. Plant Growth Reg. 43, 27–47.

    Article  CAS  Google Scholar 

  39. Ikeda-Iwai, M., Umehara, M., Satoh, S., and Kamada, H. (2003) Stress-induced somatic embryogenesis in vegetative tissues of Arabidopsis thaliana. Plant J. 34, 107–114.

    Article  CAS  PubMed  Google Scholar 

  40. Hagemann, R. (2004) The sexual inheritance of plant organelles, in Daniell, H., and Chase C., eds., Molecular Biology and Biotechnology of Plant Organelles, Kluwer Academic, The Netherlands, pp 93–113.

    Google Scholar 

  41. Dhingra, A., Portis, Jr., A. R., and Daniell, H. (2004) Enhanced translation of a chloroplast expressed RbcS gene restores SSU levels and photosynthesis in nuclear antisense RbcS plants. Proc. Natl. Acad. Sci. USA 101, 6315–6320.

    Article  CAS  PubMed  Google Scholar 

  42. Klaus, S. M. J., Huang, F. C., Eibl, C., Koop, H. U., and Golds, T. J. (2003) Rapid and proven production of transplastomic tobacco plants by restoration of pigmentation and photosynthesis. Plant J. 35, 811–821.

    Article  CAS  PubMed  Google Scholar 

  43. Kang, T. J., Loc, N. H., Mi-Ok, J., Jang, Y. S., Kim, Y. S., Seo, J. E., and Yang, M. S. (2003) Expression of the B-subunit of E. coli heat-labile enterotoxin in the chloroplasts of plants and its characterization. Transgenic Res. 12, 683–691.

    Article  CAS  PubMed  Google Scholar 

  44. Singleton, M. L. (2003) Expression of CaF1 and LcrV as a fusion protein for a vaccine against Yersinia pestis via chloroplast genetic engineering. MS thesis, University of Central Florida, USA.

    Google Scholar 

  45. Ruiz, G. (2002) Optimization of codon composition and regulatory elements for expression of the human IGF-1 in transgenic chloroplasts. MS thesis, University of Central Florida, USA.

    Google Scholar 

  46. Torres, M. (2002) Expression of interferon α5 in transgenic chloroplasts of tobacco. MS thesis, University of Central Florida, USA.

    Google Scholar 

  47. Falconer, R. (2002) Expression of interferon α2b in transgenic chloroplasts of a low-nicotine tobacco. MS thesis, University of Central Florida, USA.

    Google Scholar 

  48. Muhlbauer, S. K., Lossl, A., Tzekova, L., Zou, Z. R., and Koop, H. U. (2002) Functional analysis of plastid DNA replication origins in tobacco by targeted inactivation. Plant J. 32, 175–184.

    Article  PubMed  Google Scholar 

  49. Jeong, S. W., Jeong, W. J., Woo, J. W., Choi, D. W., Park, Y. I., and Liu, J. R. (2004) Dicistronic expression of the green fluorescent protein and antibiotic resistance genes in the plastid for selection and tracking of plastid-transformed cells in tobacco. Plant Cell Rep. 22, 747–751.

    Article  CAS  PubMed  Google Scholar 

  50. Carrer, H. and Maliga, P. (1995) Targeted insertion of foreign genes into the tobacco plastid genome without physical linkage to the selectable marker gene. Biotechnology 13, 791–794.

    Article  CAS  Google Scholar 

  51. Bock, R. and Maliga, P. (1995) Correct splicing of a group II intron from a chimeric reporter gene transcript in tobacco plastids. Nucleic Acids Res. 23, 2544–2547.

    Article  CAS  PubMed  Google Scholar 

  52. Huang, F. C., Klaus, S. M. J., Herz, S., Zou, Z., Koop, H. U., and Golds, T. J. (2002) Efficient plastid transformation in tobacco using the aphA-6 gene and kanamycin selection. Mol. Genet. Genomics 268, 19–27.

    Article  CAS  PubMed  Google Scholar 

  53. Svab, Z. and Maliga, P. (1993) High frequency plastid transformation in tobacco by selection for a chimeric aadA gene. Proc. Natl. Acad. Sci. USA 90, 913–917.

    Article  CAS  PubMed  Google Scholar 

  54. Viitanen, P. V., Devine, A. L., Khan, M. S., Deuel, D. L., Dyk, D. E. V., and Daniell, H. (2005) Metabolic engineering of the chloroplast genome using the E. coli ubiC gene reveals that chorismate is a readily abundant plant precursor for p-Hydroxybenzoic acid biosynthesis. Plant Physiol. 136, 4048–4060.

    Article  Google Scholar 

  55. Dhingra, A. (2000) Analysis of components involved in regulation of plastid gene expression, plastome organization and its manipulation with emphasis on rice. Ph.D. thesis, University of Delhi South Campus, New Delhi, India.

    Google Scholar 

  56. Zoubenko, O. V., Allison, L. A., Svab, Z., and Maliga, P. (1994) Efficient targeting of foreign genes into the tobacco plastid genome. Nucleic Acids Res. 22, 3819–3824.

    Article  CAS  PubMed  Google Scholar 

  57. Staub, J. M. and Maliga, P. (1993) Accumulation of D1 Polypeptide in tobacco plastids is regulated via the untranslated region of the psbA messenger RNA. EMBO J. 12, 601–606.

    CAS  PubMed  Google Scholar 

  58. Zou, Z., Eibl, C., and Koop, H. U. (2003) The stem-loop structure of the tobacco psbA 5′ UTR is an important determinant of mRNA stability and translation efficiency. Mol. Gen. Genom. 269, 340–349.

    Article  CAS  Google Scholar 

  59. Eibl, C., Zou, Z. R., Beck, A., Kim, M., Mullet, J., and Koop, H. U. (1999) In vivo analysis of plastid psbA, rbcL, rpl32 UTR elements by chloroplast transformation: tobacco plastid gene expression is controlled by modulation of transcript levels and translation efficiency. Plant J. 19, 333–345.

    Article  CAS  PubMed  Google Scholar 

  60. Koop, H. U., Steinmuller, K., Wagner, H., Rossler, C., Eibl, C., and Sacher, L. (1996) Integration of foreign sequences into the tobacco plastome via PEG mediated protoplast transformation. Planta 199, 193–201.

    Article  CAS  PubMed  Google Scholar 

  61. Thum, K. E., Kim, M., Morishige, D. T., Eibl, C., Koop, H. U., and Mullet, J. E. (2001) Analysis of the barley chloroplast psbD light responsive promoter elements in transplastomic tobacco. Plant Mol. Biol. 47, 353–366.

    Article  CAS  PubMed  Google Scholar 

  62. Daniell, H., Krishnan, M., and McFadden, B. F. (1991) Transient expression of beta-glucuronidase in different cellular compartments following biolistic delivery of foreign DNA into wheat leaves and calli. Plant Cell Rep. 9, 615–619.

    Article  CAS  Google Scholar 

  63. Goldschmidt Clermont, M. (1991) Transgenic expression of aminoglycoside adenine transferase in the chloroplast—a selectable marker for site-directed transformation of Chlamydomonas. Nucleic Acids Res. 19, 4083–4089.

    Article  CAS  PubMed  Google Scholar 

  64. Carrer, H., Hockenberry, T. N., Svab, Z., and Maliga, P. (1993) Kanamycin resistance as a selectable marker for plastid transformation in tobacco. Mol. Gen. Genet. 241, 49–56.

    Article  CAS  PubMed  Google Scholar 

  65. Bateman, J. M. and Purton, S. (2000) Tools for chloroplast transformation in Chlamydomonas: expression vectors and a new dominant selectable marker. Mol. Gen. Genet. 263, 404–410.

    Article  CAS  PubMed  Google Scholar 

  66. Hibberd, J. M., Linley, P. J., Khan, M. S., and Gray, J. C. (1998) Transient expression of green fluorescent protein in various plastid types following microprojectile bombardment. Plant J. 16, 627–632.

    Article  CAS  Google Scholar 

  67. Khan, M. S. and Maliga, P. (1999) Fluorescent antibiotic resistance marker for tracking plastid transformation in higher plants. Nat. Biotechnol. 17, 910–915.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc.

About this protocol

Cite this protocol

Dhingra, A., Daniell, H. (2006). Chloroplast Genetic Engineering Via Organogenesis or Somatic Embryogenesis. In: Salinas, J., Sanchez-Serrano, J.J. (eds) Arabidopsis Protocols. Methods in Molecular Biology™, vol 323. Humana Press. https://doi.org/10.1385/1-59745-003-0:245

Download citation

  • DOI: https://doi.org/10.1385/1-59745-003-0:245

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-395-4

  • Online ISBN: 978-1-59745-003-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics