Skip to main content

Microtextured Polydimethylsiloxane Substrates for Culturing Mesenchymal Stem Cells

  • Protocol
Book cover Microfluidic Techniques

Part of the book series: Methods In Molecular Biology™ ((MIMB,volume 321))

  • 2142 Accesses

Abstract

Musculoskeletal tissue-engineering strategies have recently focused on the use of biomaterial scaffolds capable of guiding growth and organization of mesenchymal stem cells (MSCs), which are precursors for connective tissues. This chapter describes the methods for culturing MSCs on micropatterned polydimethylsiloxane (PDMS) substrates. MSCs are isolated from bone marrow biopsies and subcultivated before plating onto PDMS substrates. Micropatterned substrates are fabricated by casting PDMS on AZ P4620 photoresist molds. Prior to plating cells, substrates are cleaned, sterilized, and coated with fibronectin. Micropatterned growth surfaces are a useful research tool enabling the study of cell morphology and alignment in response to substrate geometry. Understanding MSC response to surface topography will assist in the design of improved scaffolds for connective-tissue repair.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bonassar, L. J. and Vacanit, C. A. (1998) Tissue engineering: the first decade and beyond. J. Cell Biochem. Suppl. 30/31, 297–303.

    Article  Google Scholar 

  2. Ringe, J., Kaps, C., Burmester, G., and Sittinger, M. (2003) Stem cells for regenerative medicine: advances in the engineering of tissues and organs. Naturwissenschaften 89, 338–351.

    Article  Google Scholar 

  3. Muschler, G. F., Nakamoto, C., and Griffith, L. G. (2004) Engineering principles of clinical cell-based tissue engineering. J. Bone Joint Surg. 86-A, 1541–1558.

    PubMed  Google Scholar 

  4. Oreffo, R. O. C. and Triffitt, J. T. (1999) Future potentials for using osteogenic stem cells and biomaterials in orthopedics. Bone 25, 5S–9S.

    Article  PubMed  CAS  Google Scholar 

  5. Caplan, A. I. and Bruder, S. P. (2001) Mesenchymal stem cells: building blocks for molecular medicine in the 21st century. Trends Mol. Med. 7, 259–264.

    Article  PubMed  CAS  Google Scholar 

  6. Pitttenger, M. F., Mackay, A. M., Beck, S. C., et al. (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284, 143–147.

    Article  Google Scholar 

  7. Caplan, A. I. (1991) Mesenchymal stem cells. J. Orthop. Res. 9, 641–650.

    Article  PubMed  CAS  Google Scholar 

  8. Butler, D. L., Goldstein, S. A., and Guilak, F. (2000) Functional tissue engineering: the role of biomechanics. ASME J. Biomech. Eng. 122, 570–575.

    Article  CAS  Google Scholar 

  9. Young, R. G., Butler, D. L., Weber, W., Caplan, A. I., Gordon, S. L., and Fink, D. J. (1998) Use of mesenchymal stem cells in a collagen matrix for Achilles tendon repair. J. Orthop. Res. 16, 406–4413.

    Article  PubMed  CAS  Google Scholar 

  10. Awad, H. A., Butler, D. L., Boivin, G. P., et al. (1999) Autologous mesenchymal stem cell-mediated repair of tendon. Tissue Eng. 5, 267–277.

    Article  PubMed  CAS  Google Scholar 

  11. Awad, H. A. (1999) Mesenchymal stem cell seeded collagen scaffolds for tendon repair. PhD dissertation, University of Cincinnati.

    Google Scholar 

  12. Freed, L. E. and Vunjak-Novakovic, G. 91998) Culture of organized cell communities. Adv. Drug Deliv. Rev. 33, 15–30.

    Google Scholar 

  13. Matsuzaka, K., Walboomers, F., de Ruijter, A., and Jansen, J. A. (2000) Effect of microgrooved poly-l-lactic (PLA) surfaces on proliferation, cytoskeletal organization, and mineralized matrix formation of rat bone marrow cells. Clin. Oral Impl. Res. 11, 325–333.

    Article  CAS  Google Scholar 

  14. Walboomers, X. F., Ginsel, L. A., and Jansen, J. A. (2000) Early spreading events of fibroblasts on microgrooved substrates. J. Biomed. Mater. Res. 51, 529–534.

    Article  PubMed  CAS  Google Scholar 

  15. Soboyejo, W. O., Nemetski, B., Allameh, S., Marcantonio, N., Mercer, C., and Ricci, J. (2002) Interactions between MC3T3-E1 cells and textured Ti6A14V surfaces. J. Biomed. Mater. Res. 62, 56–72.

    Article  PubMed  CAS  Google Scholar 

  16. Oakley, C., Jaeger, N. A., and Brunette, D. M. (1997) Sensitivity of fibroblasts and their cytoskeletons to substratum topographies: topographic guidance and topographic compensation by micromachined grooves of different dimension. Exp. Cell Res. 234, 413–424.

    Article  PubMed  CAS  Google Scholar 

  17. Matsuzaka, K., Walboomers, X. F., Yoshinari, M., Inoue, T., and Jansen, J. A. (2003) The attachment and growth behavior of osteoblast-like cells on microtextured surfaces. Biomaterials 24, 2711–2719.

    Article  PubMed  CAS  Google Scholar 

  18. Mata, A., Boehm, C., Fleischman, A. J., Muschler, G., and Roy, S. (2002) Growth of connective tissue progenitor cells on microtextured polydimethylsiloxane surfaces. J. Biomed. Mater. Res. 62, 499–506.

    Article  PubMed  CAS  Google Scholar 

  19. Flemming, R. G., Murphy, C. J., Abrams, G. A., Goodman, S. L., and Nealey, P. F. (1999) Effects of synthetic micro-and nano-structured surfaces on cell behavior. Biomaterials 20, 573–588.

    Article  PubMed  CAS  Google Scholar 

  20. den Braber, E. T., de Ruijter, J. E., Smits, H. T. J., Ginsel, L. A., von Recum, A. F., and Jansen, J. A. (1996) Quantitative analysis of cell proliferation and orientation on substrata with uniform parallel surface micro-grooves. Biomaterials 17, 1093–1099.

    Article  Google Scholar 

  21. den Braber, E. T., de Ruijter, J. E., Ginsel, L. A., von Recum, A. F., and Jansen, J. A. (1998) Orientation of ECM protein deposition, fibroblast cytoskeleton, and attachment complex components on silicone microgrooved surfaces. J. Biomed. Mater. Res. 40, 291–300.

    Article  Google Scholar 

  22. Curtis, A. and Wilkinson, C. (1997) Topographical control of cells. Biomaterials 18, 1573–1583.

    Article  PubMed  CAS  Google Scholar 

  23. Brunette, D. M. and Chehroudi, B. (1999) The effects of the surface topography of micromachined titanium substrata on cell behavior in vitro and in vivo. ASME J. Biomech. Eng. 121, 49–57.

    Article  CAS  Google Scholar 

  24. Weiss, P. (1959) Cellular dynamics. Rev. Modern Phys. 31, 11–20.

    Article  CAS  Google Scholar 

  25. Chen, C. S., Mrkisich, M., Huiang, S., Whitesides, G. M., and Ingber, D. E. (1997) Geometric control of cell life and death. Science 276, 1425–1428.

    Article  PubMed  CAS  Google Scholar 

  26. Kane, R. S., Takayama, S., Ostuni, E., Ingber, D. E., and Whitesides, G. M. (1999) Patterning proteins and cells using soft lithography. Biomaterials 20, 2363–2375.

    Article  PubMed  CAS  Google Scholar 

  27. Folch, A., Ayon, A., Hurtado, O., Schmidt, M., and Toner, M. (1999) Molding of deep polydimethylsiloxane microstructures for microfluidics and biological applications. ASME J. Biomech. Eng. 121, 28–34.

    Article  CAS  Google Scholar 

  28. Madou, M. J. (2002) Fundamentals of Microfabrication: The Science of Miniaturization, 2nd ed., CRC Press, New York, NY.

    Google Scholar 

  29. Kuo, A. C. M. (1999) Poly(dimethylsiloxane), in Polmer Data Handbook, (Mark, J. E., ed.), Oxford University Press, New York, NY, pp. 411–435.

    Google Scholar 

  30. Sia, S. K. and Whitesides, G. M. (2003) Microfluidic devices fabricated in poly(dimethylsiloxane) for biological studies. Electrophoresis 24, 3563–3576.

    Article  PubMed  CAS  Google Scholar 

  31. Lee, J. N., Park, C., and Whitesides, G. M. (2003) Solvent compatibility of poly(dimethylsiloxane)-based microfluidic devices. Anal. Chem. 75, 6545–6554.

    Google Scholar 

  32. Kim, B., Peterson, E. T. K., and Papautsky, I. (2004) Long-term stability of plasma oxidized PDMS surfaces, in Proceedings of the 26th International Conference of the IEEE EMBS, San Francisco, CA, September 1–5, 2004, pp. 5013–5016.

    Google Scholar 

  33. Toworfe, G. K., Composto, R. J., Adams, C. S., Shapiro, I. M., and Ducheyne, P. (2004) Fibronectin adhesion on surface-activated poly(dimethylsiloxane) and its effect on cellular function. J. Biomed. Mater. Res. 71A, 449–461.

    Article  CAS  Google Scholar 

  34. Freshney, R. I. (2000) Culture of Animal Cells: A Manual of Basic Technique, 4th ed. J Wiley, New York, NY.

    Google Scholar 

  35. Salgado, A. J., Gomes, M. E., Coutinho, O. P., and Reis, R. L. (2004) Isolation and osteogenic differentiation of bone-marrow progenitor cells for application in tissue engineering, in Methods in Molecular Biology, vol. 238: Biiopolymer Methods in Tissue Engineering (Hollander, A. P. and Hatton, P. V., eds.), Humana, Totowa, NJ, pp. 123–129.

    Google Scholar 

  36. Pittenger, M. F., Mbalaviele, G., and Black, M. (2000) Mesenchymal stem cells, in Human Cell Culture, vol. 5: Primary Mesenchymal Cells (Koller, M. R., Palsson, B. O., and Masters, R. W., eds.), Kluwer, Boston, MA, pp. 189–208.

    Google Scholar 

  37. Pittenger, M. F., Flaker, A. F., and Deans, R. J. (2002) Stem cell culture: mesenchymal stem cells from bone marrow, in Mehtods of Tissue Engineering (Atala, A. and Lanza, R. P., eds.), Academic, San Diego, CA, pp. 461–469.

    Google Scholar 

  38. Lennon, D. P., Haynesworth, S. E., Bruder, S. P., Jaiswal, N., and Caplan, A. I. (1996) Human and animal mesenchymasl progenitor cells from bone marrow: identificaion of serum f or optimal selection and proliferation. In Vitro Cell. Dev. Viol. Anim. 32, 602–611.

    Article  Google Scholar 

  39. Lennon, D. P., Haynesworth, S. E., Yound, R. G., Dennis, J. E., and Caplan, A. I. (1995) A chemically defined medium supports in vitro proliferation and maintains the osteochondral potential of rat marrow-derived mesenchymal stem cells. Exp. Cell Res. 219, 211–222.

    Article  PubMed  CAS  Google Scholar 

  40. Sekiya, I., Larson, B. J., Smith, J. R., Pochampally, R., Cui, J., and Prockop, D. J. (2002) Expansion of human adult stem cells from bone marrow stroma: conditions that maximize the yields of early progenitors and evaluate their quality. Stem Cells 20, 530–541.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc.

About this protocol

Cite this protocol

Peterson, E.T.K., Papautsky, I. (2006). Microtextured Polydimethylsiloxane Substrates for Culturing Mesenchymal Stem Cells. In: Minteer, S.D. (eds) Microfluidic Techniques. Methods In Molecular Biology™, vol 321. Humana Press. https://doi.org/10.1385/1-59259-997-4:179

Download citation

  • DOI: https://doi.org/10.1385/1-59259-997-4:179

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-517-0

  • Online ISBN: 978-1-59259-997-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics