Skip to main content

Analysis of HPV Transcription by RPA

  • Protocol
Human Papillomaviruses

Part of the book series: Methods in Molecular Medicine ((MIMM,volume 119))

  • 1283 Accesses

Summary

Human papillomavirus (HPV) transcription is a complex process using multiple promoters, splices, and polyadenylation sites to create polycistronic transcripts capable of encoding the known and putative viral genes at the correct time and place throughout the differentiation-dependent life cycle. The ribonuclease protection assay (RPA) provides a flexible and convenient tool to study the behavior of HPV transcripts under a variety of cellular conditions and treatments, or in response to genetic mutations. Using a known cloned DNA as a template, an antisense RNA probe is generated and hybridized to the sample RNA. After digestion with ribonucleases (RNases), the fragments of the probe protected by the sample are examined by gel electrophoresis. With the proper design of the probe template, information about promoter usage, splicing, transcript levels, and other parameters can be accurately, simply, and quantitatively measured throughout the HPV life cycle.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Meyers, C., Frattini, M. G., Hudson, J. B., and Laimins, L. A. (1992) Biosynthesis of human papillomavirus from a continuous cell line upon epithelial differentiation. Science 257, 971–973.

    Article  PubMed  CAS  Google Scholar 

  2. Ozbun, M. A. and Meyers, C. (1997) Characterization of late gene transcripts expressed during vegetative replication of human papillomavirus type 31b. J. Virol. 71, 5161–5172.

    PubMed  CAS  Google Scholar 

  3. Ozbun, M. A. and Meyers, C. (1998) Human papillomavirus type 31b E1 and E2 transcript expression correlates with vegetative viral genome amplification. Virology 248, 218–230.

    Article  PubMed  CAS  Google Scholar 

  4. Ozbun, M. A. and Meyers, C. (1998) Temporal usage of multiple promoters during the life cycle of human papillomavirus type 31b. J Virol 72, 2715–2722.

    PubMed  CAS  Google Scholar 

  5. Bechtold, V., Beard, P. and Raj, K. (2003) Human papillomavirus type 16 E2 protein has no effect on transcription from episomal viral DNA. J. Virol. 77, 2021–2028.

    Article  PubMed  CAS  Google Scholar 

  6. Frattini, M. G., Lim, H. B., and Laimins, L. A. (1996) In vitro synthesis of oncogenic human papillomaviruses requires episomal genomes for differentiation-dependent late expression. Proc. Natl. Acad. Sci. USA 93, 3062–3067.

    Article  PubMed  CAS  Google Scholar 

  7. Sen, E., Bromberg-White, J. L., and Meyers, C. (2002) Genetic analysis of cis regulatory elements within the 5′ region of the human papillomavirus type 31 upstream regulatory region during different stages of the viral life cycle. J. Virol. 76, 4798–4809.

    Article  PubMed  CAS  Google Scholar 

  8. Bromberg-White, J. L. and Meyers, C. (2003) Comparison of the basal and glucocorticoid-inducible activities of the upstream regulatory regions of HPV18 and HPV31 in multiple epithelial cell lines. Virology 306, 197–202.

    Article  PubMed  CAS  Google Scholar 

  9. Ruesch, M., Stubenrauch, F., and Laimins, L. (1998) Activation of papillomavirus late gene transcription and genome amplification upon differentiation in semisolid medium is coincident with expression of involucrin and transglutaminase but not keratin 10. J. Virol. 72, 5016–5024.

    PubMed  CAS  Google Scholar 

  10. DiLorenzo, T. P. and Steinberg, B. M. (1995) Differential regulation of human papillomavirus type 6 and 11 early promoters in cultured cells derived from laryngeal papillomas. J. Virol. 69, 6865–6872.

    PubMed  CAS  Google Scholar 

  11. del Mar Pena, L. M. and Laimins, L. A. (2001) Differentiation-dependent chromatin rearrangement coincides with activation of human papillomavirus type 31 late gene expression. J. Virol. 75, 10,005–10,013.

    Article  PubMed  Google Scholar 

  12. Schenborn, E. T. and Mierendorf, R. C., Jr. (1985) A novel transcription property of SP6 and T7 RNA polymerases: dependence on template structure. Nucleic Acids Res. 13, 6223–6236.

    Article  PubMed  CAS  Google Scholar 

  13. Steele, B. K., Meyers, C., and Ozbun, M. A. (2002) Variable expression of some “housekeeping” genes during human keratinocyte differentiation. Anal. Biochem. 307, 341–347.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc.

About this protocol

Cite this protocol

Bodily, J.M., Meyers, C. (2005). Analysis of HPV Transcription by RPA. In: Davy, C., Doorbar, J. (eds) Human Papillomaviruses. Methods in Molecular Medicine, vol 119. Humana Press. https://doi.org/10.1385/1-59259-982-6:279

Download citation

  • DOI: https://doi.org/10.1385/1-59259-982-6:279

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-373-2

  • Online ISBN: 978-1-59259-982-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics