Skip to main content

Ontology-Driven Approaches to Analyzing Data in Functional Genomics

  • Protocol
Book cover Bioinformatics and Drug Discovery

Part of the book series: Methods in Molecular Biology ((MIMB,volume 316))

Abstract

Ontologies are fundamental knowledge representations that provide not only standards for annotating and indexing biological information, but also the basis for implementing functional classification and interpretation models. This chapter discusses the application of gene ontology (GO) for predictive tasks in functional genomics. It focuses on the problem of analyzing functional patterns associated with gene products. This chapter is divided into two main parts. The first part overviews GO and its applications for the development of functional classification models. The second part presents two methods for the characterization of genomic information using GO. It discusses methods for measuring functional similarity of gene products, and a tool for supporting gene expression clustering analysis and validation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. The Gene Ontology Consortium. (2001) Creating the gene ontology resource: design and implementation. Genome Res. 11, 1425–1433.

    Article  Google Scholar 

  2. Ouzounis, C., Coulson, R., Enright, A., Kunin, V., and Pereira-Leal, J. (2003) Classification schemes for protein structure and function. Nat. Rev. Genet. 4, 508–519.

    Article  PubMed  CAS  Google Scholar 

  3. Harris, M. and Parkinson, H. (2003) Standards and ontologies for functional genomics: towards unified ontologies for biology and biomedicine. Compar. Funct. Genomics 4, 116–120.

    Article  CAS  Google Scholar 

  4. Bard, J. (2003) Ontologies: formalising biological knowledge for bioinformatics. BioEssays 25, 501–506.

    Article  PubMed  CAS  Google Scholar 

  5. King, O., Lee, J., Dudley, A., Jansen, D., Church, G., and Roth, F. (2003) Predicting phenotype from patterns of annotation. Bioinformatics 19(Suppl. 1), 183–189.

    Article  Google Scholar 

  6. Hvidsten, T., Laegreid, A., and Komorowski, J. (2003) Learning rule-based models of biological process from gene expression time profiles using Gene Ontology. Bioinformatics 19, 1116–1123.

    Article  PubMed  CAS  Google Scholar 

  7. King, O., Foulger, R., Dwight, S., White, J., and Roth, F. (2003) Predicting gene function from patterns of annotation. Genome Res. 13, 896–904.

    Article  PubMed  CAS  Google Scholar 

  8. Laegreid, A., Hvidsten, T., Midelfart, H., Komorowski, J., and Sandvik, A. (2003) Predicting gene ontology biological process from temporal gene expression patterns. Genome Res. 13, 965–979.

    Article  CAS  Google Scholar 

  9. Iyer, V., Eisen, M., Ross, D., et al. (1999) The transcriptional program in the response of human fibroblast to serum. Science 283, 83–87.

    Article  PubMed  CAS  Google Scholar 

  10. Zhong, J., Zhu, H., Li, Y., and Yu, Y. (2002) Conceptual graph matching for semantic search, in Conceptual Structures: Integration and Interfaces (Priss, U., Corbett, D., and Angelova, G., eds.), Springer Verlag, London, UK, pp. 92–106.

    Chapter  Google Scholar 

  11. Budanitsky, A. and Hirst, G. (2001) Semantic distance in WordNet: an experimental, application-oriented evaluation of five measures, in Workshop on WordNet and Other Lexical Resources, Pittsburgh.

    Google Scholar 

  12. Resnik, P. (1995) Using information content to evaluate semantic similarity in a taxonomy, in Proceedings of the 14th International Joint Conference on Artificial Intelligence, Montreal, Canada (Mellish, C. S., ed.), Morgan Kaufman, San Mateo, CA, pp. 448–453.

    Google Scholar 

  13. Lin, D. (1998) An information-theoretic definition of similarity, in Proceedings of the 15th International Conference on Machine Learning, Montreal, Canada (Mellish, C. S., ed.), Morgan Kaufman, San Mateo, CA, pp. 296–304.

    Google Scholar 

  14. Lord, P., Stevens, R., Brass, A., and Goble, C. (2003) Investigating semantic similarity measures across the Gene Ontology: the relationship between sequence and annotation. Bioinformatics 19, 1275–1283.

    Article  PubMed  CAS  Google Scholar 

  15. Cho, R., Campbell, M., Winzeler, E., et al. (1998) A genome-wide transcriptional analysis of the mitotic cell cycle. Mol. Cell 2, 65–73.

    Article  PubMed  CAS  Google Scholar 

  16. Al-Shahrour, F., Diaz-Uriarte, R., and Dopazo, J. (2003) FatiGO: a web tool for finding significant associations of Gene Ontology terms with groups of genes. Bioinformatics 20, 578–580 (epub).

    Article  Google Scholar 

  17. Khatri, P., Draghici, S., Ostermeier, G. C., and Krawetz, S. A. (2002) Profiling gene expression using onto-express. Genomics 79, 1–5.

    Article  Google Scholar 

  18. Doniger, S. W., Salomonis, N., Dahlquist, K. D., Vranizan, K., Lawlor, S. C., and Conklin, B. R. (2003) MAPPFinder: using Gene Ontology and GenMAPP to create a global gene-expression profile from microarray data. Genome Biol. 4, R7.

    Article  PubMed  Google Scholar 

  19. Robinson, M. D., Grigull, J., Mohammad, N., and Hughes, T. R. (2002) FunSpect: a web-based cluster interpreter for yeast. BMC Bioinformatics 3, 1–5.

    Article  Google Scholar 

  20. Zeeberg, B. R., Feng, W., Wang, G., et al. (2003) GoMiner: a resource for biological interpretation of genomic and proteomic data. Genome Biol. 4(4), R28.1–R28.8.

    Article  Google Scholar 

  21. Mateos, A., Herrero, J., Tamames, J., and Dopazo, J. (2002) Supervised neural networks for clustering conditions in DNA array data after reducing noise by clustering gene expression profiles, in Methods of Microarray Data Analysis II (Lin, S. and Johnson, K., eds.), Kluwer, Boston, MA.

    Google Scholar 

  22. Slonim, D. K. (2002) From patterns to pathways: gene expression data analysis comes of age. Nat. Genet. (Suppl. The Chipping Forecast) 32, 502–508.

    CAS  Google Scholar 

  23. Westfall, P. H. and Young, S. S. (1993) Resampling-Based Multiple Testing, John Wiley & Sons, New York.

    Google Scholar 

  24. Benjamini, Y. and Hochberg, Y. (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. B 57, 289–300.

    Google Scholar 

  25. Benjamini, Y. and Yekutieli, D. (2001) The control of the false discovery rate in multiple testing under dependency. Ann. Stat. 29, 1165–1188.

    Article  Google Scholar 

  26. Eisen, M., Spellman, P. L., Brown, P. O., and Botsein, D. (1998) Cluster analysis and display of genome-wide expression patterns. Proc. Natl. Acad. Sci. USA 95, 14,863–14,868.

    Article  PubMed  CAS  Google Scholar 

  27. Chu, S., DeRisi, J., Eisen, M., Mulholland, J., Botsein, D., Brown, P. O., and Herskowitz, I. (1998) The transcriptional program sporulation in budding yeast. Science 282, 699–705.

    Article  PubMed  CAS  Google Scholar 

  28. Herrero, J., Valencia, A., and Dopazo, J. (2001) A hierarchical unsupervised growing neural network for clustering gene expression patterns. Bioinformatics 17, 126–136.

    Article  PubMed  CAS  Google Scholar 

  29. Herrero, J., Al-Shahrour, F., Diaz-Uriarte, R., et al. (2003) GEPAS, a web-based resource for microarray gene expression data analysis. Nucleic Acids Res. 31, 3461–3467.

    Article  PubMed  CAS  Google Scholar 

  30. Pritchard, C. C., Hsu, L., and Nelson, P. S. (2001) Project normal: defining normal variance in mouse gene expression. Proc. Natl. Acad. Sci. USA 98, 13,266–13,271.

    Article  PubMed  CAS  Google Scholar 

  31. Diaz-Uriarte, R., Al-Shahrour, F., and Dopazo, J. (2003) Use of GO terms to understand the biological significance of microarray differential gene expression data, in Methods of Microarray Data Analysis III (Lin, S. and Johnson, K., eds.), Kluwer, Boston, MA; in press.

    Google Scholar 

  32. Mota, V. K., Lindgren, C. M., Eriksson, K. F., et al. (2003) PGC-1-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat. Genet. 34, 267–273.

    Article  Google Scholar 

Download references

Acknowledgment

We thank Oliver Bodenreider for helpful advice on ontologies. This work was supported by grant BIO2001-0068 from the Ministerio de Ciencia y Tecnología. F.A. was partly supported by a visiting fellowship from the US National Library of Medicine.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc.

About this protocol

Cite this protocol

Azuaje, F., Al-Shahrour, F., Dopazo, J. (2006). Ontology-Driven Approaches to Analyzing Data in Functional Genomics. In: Larson, R.S. (eds) Bioinformatics and Drug Discovery. Methods in Molecular Biology, vol 316. Humana Press. https://doi.org/10.1385/1-59259-964-8:67

Download citation

  • DOI: https://doi.org/10.1385/1-59259-964-8:67

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-346-6

  • Online ISBN: 978-1-59259-964-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics