Skip to main content

Pathogen and Biological Contamination Management

The Road Ahead

  • Protocol
Plant Cell Culture Protocols

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 318))

Abstract

Multiplication of certified pathogen-free stock plants in vitro makes an important contribution to the production of disease-free planting material for vegetatively propagated crops. Meristem culture is extensively used to eliminate pathogens and contaminants from microbially contaminated plants prior to micropropagation. The approach to pathogen and contamination management differs. It is essential to avoid the release of pathogen-contaminated microplants and to ensure this the plant pathogen-testing guidelines and protocols issued by the Food and Agriculture Organisation (FAO) and its regional representative organizations should be followed. Where in vitro methods are used to eliminate pathogens, the progeny plants should be established in vivo under quarantine conditions and tested under FAO guidelines before being used as stock plants for in vitro multiplication. At establishment of microplants in vitro (stage 1), cultures should be culture-indexed for the presence of microbial contaminants. If pathogenand contaminant-free cultures are established, then the risk is that of managing laboratory contamination by common environmental microorganisms based on Hazard Analysis Critical Control Points (HACCP) principles.

International plant health certification organizations are conservative and rely on established pathogen indexing protocols. They are reluctant to accept DNA-based tests and do not accept testing of in vitro cultures. Given that in time both of these restrictions may be relaxed, micropropagators may look forward to availing more of diagnostic service providers using polymerase chain reaction-based multiplex assays for pathogen-indexing and advances in diagnostic kits for environmental microorganisms in support of laboratory contamination management; with the caveat that molecular tests for pathogens may continue to require confirmation by inoculation of indicator plant species.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cassells, A. C. and Tahmatsidou, V. (1996) The influence of local plant growth conditions on non-fastidious bacterial contamination of meristem-tips of Hydrangea cultured in vitro. Plant Cell Tiss. Org. Cult. 47, 15–26.

    Article  Google Scholar 

  2. Leifert, C., Morris, C., and Waites W. M. (1994) Ecology of microbial saprophytes and pathogens in tissue cultured and field grown plants. CRC Crit. Rev. Plant Sci. 13, 139–183.

    Google Scholar 

  3. Leifert, C., Nicholas, J. R., and Waites, W. M. (1990) Yeast contaminants of micropropagated plant cultures. J. Appl. Bacteriol. 69, 471–476.

    Google Scholar 

  4. Pype, J., Everaert, K., and Debergh, P. C. (1997) Contamination by microarthropods, in Pathogen and Microbial Contamination Management in Micropropagation (Cassells, A. C., ed.), Kluwer Academic Publishers, Dordrecht, pp. 259–266.

    Google Scholar 

  5. Krczal, G. (1998) Virus certification of ornamental plants—the European strategy, in Plant Virus Disease Control APS Press, (Hadidi, A., Khetarpal, R. K., and Koganezawa, H., eds.), St. Paul, pp. 277–287.

    Google Scholar 

  6. Leifert, C. and Cassells, A. C. (2001) Microbial hazards in plant tissue and cell cultures. In Vitro Cell Dev. Biol. 37, 133–138.

    Article  Google Scholar 

  7. Lelliott, R. A. and Stead, D. E. (1987) Methods for the Diagnosis of Bacterial Diseases of Plants, Blackwell Scientific Publications, Oxford.

    Google Scholar 

  8. Schaad, N. W., Jones, J. B., and Chun, W. (2001) Laboratory Guide for Identification of Plant Pathogenic Bacteria, APS Press, St. Louis.

    Google Scholar 

  9. Agrios, G.N. (1997) Plant Pathology, Academic Press, London.

    Google Scholar 

  10. Larone, D. H. (1987) Medically Important Fungi. A Guide to Identification, Elsevier Publishers, New York.

    Google Scholar 

  11. Krantz, G. W. (1978) A Manual of Acarolgy, Oregon State University, Corvallis.

    Google Scholar 

  12. Hull, R. (2001) Matthews Plant Virology, Academic Press, New York.

    Google Scholar 

  13. Hari, V. and Das, P. (1998). Ultra microscopic detection of plant viruses and their gene products, in Plant Virus Disease Control (Hadidi, A., Khetarpal, R. K., and Koganezawa, H., eds.), APS Press, St. Paul.

    Google Scholar 

  14. Cassells, A. C. (1991) Problems in tissue culture: culture contamination, in Micropropagation: Technology and Applications (Debergh, P. C. and Zimmerman, R. H. eds.). Kluwer Dordrecht, pp. 31–44.

    Google Scholar 

  15. Stead, D. E., Elphinstone, J. G., Weller, S., Smith, N., and Hennessy, J. (2000) Modern methods for characterizing, identifying and detecting bacteria associated with plants. Acta Hort. 530, 45–60.

    CAS  Google Scholar 

  16. O’Herlihy, E. A. and Cassells, A. C. (2003) Influence of in vitro factors on titre and elimination of model fruit tree viruses. Plant Cell Tiss. Org. Cult. 72, 33–42.

    Article  Google Scholar 

  17. Dijkstra, J. and de Jager, C. P. (1998) Practical Plant Virology: Protocols and Exercises, Springer Verlag, Berlin.

    Google Scholar 

  18. Lee, B. H. and Nagamune, T. (2004) Protein microarrays and their application. Biotechnol. Bioprocess. Eng. 9, 69–75.

    Article  CAS  Google Scholar 

  19. Schaad, N. W. and Frederick, R.D (2002) Real-time PCR and its application for rapid plant disease diagnostics. Can. J. Plant Pathol. 24, 250–258.

    Article  CAS  Google Scholar 

  20. Mishra, P. K., Fox, R. T. V., and Culham, A. (2003) Development of a PCR-based assay for rapid and reliable identification of pathogenic Fusaria. FEMS Microbiol. Letts. 218, 329–332.

    Article  CAS  Google Scholar 

  21. Singh, K. K., Mathew, R., Masih, I. E., and Paul, B. (2003) ITS region of the rDNA of Pythium rhizosaccharum sp. Nov. isolated from sugarcane roots: taxonomy and comparison with related species. FEMS Microbiol. Letts. 221, 233–236.

    Article  CAS  Google Scholar 

  22. Klerks, M. M., Leone, G. O. M., Verbeek, M., van den Heuvel, J. F., and Schoen, C. D. (2001) Development of a multiplex AmpliDet RNA for the simultaneous detection of Potato Leafroll Virus and Potato Virus Y in potato tubers. J. Virol. Meth. 93, 115–125.

    Article  CAS  Google Scholar 

  23. Bailey, A. M., Mitchell, D. J., Manjunath, K. L., Nolasco, G., and Niblett, C. L. (2002) Identification to the species level of the plant pathogens Phytophthora and Pythium by using unique sequences of the ITS1 region of ribosomal DNA as capture probes for PCR ELISA. FEMS Microbiol. Letts. 207, 153–158.

    Article  CAS  Google Scholar 

  24. Gosalvez, B., Navarro, J. A., Lorca, A., Botella, F., Sanchez-Pina, M. A., and Pallas, V. (2003). Detection of melon necrotic spot virus in water samples and melon plants by molecular methods. J. Virol. Meth. 113, 87–93.

    Article  CAS  Google Scholar 

  25. Rigotti, S., Gindro, K., Richter, H., and Viret, O. (2002). Characterization of molecular markers for specific and sensitive detection of Botrytis cinerea Pers.: Fr. in Strawberry (Fragaria x ananassa Duch.) using PCR. FEMS Microbiol. Letts. 209, 169–174.

    CAS  Google Scholar 

  26. Filion, M., St. Arnaud, M., and Jabaji-Hare, S. H. (2003) Direct quantification of fungal DNA from soil substrate using real-time PCR. J. Microbiol. Meth. 53, 67–76.

    Article  CAS  Google Scholar 

  27. Langrell, S.R.H. and Barbara, D.J. (2001) Magnetic capture hybridisation for improved PCR detection of Nectria galligena from lignified apple extracts. Plant Molec. Biol. Rep. 19, 5–11.

    Article  CAS  Google Scholar 

  28. Ozakman, M. and Schaad, N. W. (2003) A real-time BIO-PCR assay for the detection of Ralstonia solanacearum race 3, biovar 2, in asymptomatic potato tubers. Can. J. Plant Pathol. 25, 232–239.

    Article  CAS  Google Scholar 

  29. Watanabe, K., Kodama, Y., and Harayama, S. (2001) Design and evaluation of PCR primers to amplify bacterial 16S ribosomal DNA fragments used for community fingerprinting. J. Microbiol. Meth. 44, 253–262.

    Article  CAS  Google Scholar 

  30. Lay, J. O. (2001) MALDI-TOF mass spectrometry of bacteria. Mass Spectrom. Revs. 20, 172–194.

    Article  CAS  Google Scholar 

  31. Wang, Z. P., Dunlop, K., Long, S. R., and Li, L. (2002) Mass spectrometric methods for generation of protein mass database used for bacterial identification. Anal. Chem. 74, 3174–3182.

    Article  CAS  PubMed  Google Scholar 

  32. Nedelkov, D., Rasooly, A., and Nelson, R. W. (2000) Multitoxin buiosensor-mass spectrometry analysis: a new approach for rapid, real-time, sensitive analysis of staphylococcal toxins in food. Int. J. Food Microbiol. 60, 1–13.

    Article  CAS  PubMed  Google Scholar 

  33. Wenning, M., Seiler, H., and Scherer, S. (2002) Fourier-transformed infrared microscopy, a novel and rapid toot for identification of yeasts. Appl. Environ. Microbiol. 68, 4717–4721.

    Article  CAS  PubMed  Google Scholar 

  34. Bull, A. T., Goodfellow, M., and Slater, J. H. (1992) Biodiversity as a source of innovation in biotechnology. Ann. Rev. Microbiol. 46, 219–252.

    Article  CAS  Google Scholar 

  35. George, E. F. (1996) Plant Propagation by Tissue Culture, Exegetics, Basingstoke.

    Google Scholar 

  36. Cassells, A. C. (1997) Pathogen and Microbial Contamination Management in Micropropagation, Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  37. Menard, D., Coumans, M., and Gaspar, T. H. (1985) Micropropagation du Pelargonium a partir de meristems. Meded. Fac. Landbouwett. Rijksuniv. Gent. 50, 327–331.

    Google Scholar 

  38. Barrett, C. and Cassells, A. C. (1994) An evaluation of antibiotics for the elimination of Xanthomonas campestris pv. Pelargonii (Brown) from Pelargonium x domesticum cv. Grand Slam explants in vitro. Plant Cell Tiss. Org. Cult. 36, 169–175.

    Article  CAS  Google Scholar 

  39. Hoffman, P. N., Death, J. E., and Coates, D. (1981) The stability of sodium hypochlorite solutions, in Disinfectants: Their Use and Evaluation of Effectiveness (Collins, C. H., Allwood, M. C., Bloomfield, S. J. and Fox, A., eds.), Academic Press, London, pp. 77–83.

    Google Scholar 

  40. Gregory, P. H. (1973) The Microbiology of Atmosphere, Leonard Hill Books, Aylesbury.

    Google Scholar 

  41. Weller, R. and Leifert, C. (1996) Transmission of Trichophyton interdigitale via an intermediate plant host. Brit. J. Dermatol. 135, 656–657.

    Article  CAS  Google Scholar 

  42. Saar, D. E., Polans, N. O., Sorensen, P. D., and Duvall, M. R. (2001) Angiosperm DNA contamination by endophytic fungi: detection and methods of avoidance. Plant Mol. Biol. Rep., 19, 249–260.

    Article  CAS  Google Scholar 

  43. Barnett, H. L. and Hunter, B. B. (1998) Illustrated Genera of Imperfect Fungi, 4th ed., APS Press, St. Louis.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc.

About this protocol

Cite this protocol

Cassells, A.C., Doyle, B.M. (2006). Pathogen and Biological Contamination Management. In: Loyola-Vargas, V.M., Vázquez-Flota, F. (eds) Plant Cell Culture Protocols. Methods in Molecular Biology™, vol 318. Humana Press. https://doi.org/10.1385/1-59259-959-1:035

Download citation

  • DOI: https://doi.org/10.1385/1-59259-959-1:035

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-547-7

  • Online ISBN: 978-1-59259-959-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics