Advertisement

History of Plant Tissue Culture

  • Trevor A. Thorpe
Part of the Methods in Molecular Biology™ book series (MIMB, volume 318)

Abstract

Plant tissue culture, or the aseptic culture of cells, tissues, organs, and their components under defined physical and chemical conditions in vitro, is an important tool in both basic and applied studies as well as in commercial application. It owes its origin to the ideas of the German scientist, Haberlandt, at the beginning of the 20th century. The early studies led to root cultures, embryo cultures, and the first true callus/tissue cultures. The period between the 1940s and the 1960s was marked by the development of new techniques and the improvement of those already in use. It was the availability of these techniques that led to the application of tissue culture to five broad areas, namely, cell behavior (including cytology, nutrition, metabolism, morphogenesis, embryogenesis, and pathology), plant modification and improvement, pathogen-free plants and germplasm storage, clonal propagation, and product (mainly secondary metabolite) formation, starting in the mid-1960s. The 1990s saw continued expansion in the application of the in vitro technologies to an increasing number of plant species. Cell cultures have remained an important tool in the study of basic areas of plant biology and biochemistry and have assumed major significance in studies in molecular biology and agricultural biotechnology. The historical development of these in vitro technologies and their applications are the focus of this chapter.

Key Words

Cell behavior cell suspensions clonal propagation organogenesis plantlet regeneration plant transformation protoplasts somatic embryogenesis vector-dependent/independent gene transfer 

References

  1. 1.
    Thorpe, T. A. (1990) The current status of plant tissue culture, in Plant Tissue Culture: Applications and Limitations (Bhojwani, S. S., ed.), Elsevier, Amsterdam, pp. 1–33.Google Scholar
  2. 2.
    Haberlandt, G. (1902) Kulturversuche mit isolierten Pflanzenzellen. Sitzungsber. Akad. Wiss. Wien. Math.-Naturwiss. Kl., Abt. J. 111, 69–92.Google Scholar
  3. 3.
    Krikorian, A. D. and Berquam, D. L. (1969) Plant cell and tissue cultures: the role of Haberlandt. Botan. Rev. 35, 59–67.CrossRefGoogle Scholar
  4. 4.
    Kotte, W. (1922) Kulturversuche mit isolierten Wurzelspitzen. Beitr. Allg. Bot. 2, 413–434.Google Scholar
  5. 5.
    Robbins, W. J. (1922) Cultivation of excised root tips and stem tips under sterile conditions. Bot. Gaz. 73, 376–390.CrossRefGoogle Scholar
  6. 6.
    White, P. R. (1934) Potentially unlimited growth of excised tomato root tips in a liquid medium. Plant Physiol. 9, 585–600.PubMedCrossRefGoogle Scholar
  7. 7.
    Street, H. E. (1969) Growth in organized and unorganized systems, in Plant Physiology (Steward, F. C., ed.), Vol. 5B, Academic Press, New York, pp. 3–224.Google Scholar
  8. 8.
    Loo, S. W. (1945) Cultivation of excised stem tips of asparagus in vitro. Am. J. Bot. 32, 13–17.CrossRefGoogle Scholar
  9. 9.
    Ball, E. (1946) Development in sterile culture of stems tips and subjacent regions of Tropaeolum malus L. and of Lupinus albus L. Am. J. Bot. 33, 301–318.CrossRefGoogle Scholar
  10. 10.
    Monnier, M. (1995) Culture of zygotic embryos, in In Vitro Embryogenesis in Plants (Thorpe, T. A., ed.), Kluwer Academic, Dordrecht, The Netherlands, pp. 117–153.Google Scholar
  11. 11.
    Laibach, F. (1929) Ectogenesis in plants. Methods and genetic possibilities of propagating embryos otherwise dying in the seed. J. Hered. 20, 201–208.Google Scholar
  12. 12.
    Tukey, H. B. (1934) Artificial culture methods for isolated embryos of deciduous fruits. Proc. Am. Soc. Hortic. Sci. 32, 313–322.Google Scholar
  13. 13.
    LaRue, C. D. (1936) The growth of plant embryos in culture. Bull. Torrey Bot. Club 63, 365–382.CrossRefGoogle Scholar
  14. 14.
    Gautheret, R. J. (1934) Culture du tissus cambial. C.R. Hebd. Seances Acad. Sc. 198, 2195–2196.Google Scholar
  15. 15.
    Gautheret, R. J. (1935) Recherches sur la culture des tissus végétaux. Ph.D. Thesis, Paris.Google Scholar
  16. 16.
    Gautheret, R. J. (1939) Sur la possibilité de réaliser la culture indéfinie des tissus de tubercules de carotte. C.R. Hebd. Seances Acad. Sc. 208, 118–120.Google Scholar
  17. 17.
    Nobécourt, P. (1939) Sur la pérennité et l’augmentation de volume des cultures de tissues végétaux. C.R. Seances Soc. Biol. Ses Fil. 130, 1270–1271.Google Scholar
  18. 18.
    White, P. R. (1939) Potentially unlimited growth of excised plant callus in an artificial nutrient. Am. J. Bot. 26, 59–64.CrossRefGoogle Scholar
  19. 19.
    Nobécourt, P. (1939) Sur les radicelles naissant des cultures de tissus végétaux. C.R. Seances Soc. Biol. Ses Fil. 130, 1271–1272.Google Scholar
  20. 20.
    White, P.R. (1939) Controlled differentiation in a plant tissue culture. Bull. Torrey Bot. Club 66, 507–513.CrossRefGoogle Scholar
  21. 21.
    White, P. R. (1963) The Cultivation of Animal and Plant Cells, 2nd ed., Ronald Press, New York.Google Scholar
  22. 22.
    Bhojwani, S. S. and Razdan, M. K. (1983) Plant Tissue Culture: Theory and Practice. Developments in Crop Science, Vol. 5. Elsevier, Amsterdam.Google Scholar
  23. 23.
    Gautheret, R. J. (1985) History of plant tissue and cell culture: A personal account, in Cell Culture and Somatic Cell Genetics of Plants (Vasil, I. K., ed.), Vol. 2, Academic Press, New York, pp. 1–59.Google Scholar
  24. 24.
    Thorpe, T. A. (2000) History of plant cell culture. Chap. 1, in Plant Tissue Culture: Techniques and Experiments, (Smith, R. H., ed.) 2nd ed., Academic Press, California, pp. 1–32. (With permission from Elsevier).Google Scholar
  25. 25.
    Van Overbeek, J., Conklin, M. E., and Blakeslee, A. F. (1941) Factors in coconut milk essential for growth and development of very young Datura embryos. Science 94, 350–351.CrossRefGoogle Scholar
  26. 26.
    Gautheret, R. J. (1942) Hétéro-auxines et cultures de tissus végétaux. Bull. Soc. Chim. Biol. 24, 13–41.Google Scholar
  27. 27.
    Gautheret, R. J. (1955) Sur la variabilité des propriétés physiologiques des cultures de tissues végétaux. Rev. Gén. Bot. 62, 5–112.Google Scholar
  28. 28.
    Nobécourt, P. (1955) Variations de la morphologie et de la structure de cultures de tissues végétaux. Ber. Schweiz. Bot. Ges. 65, 475–480.Google Scholar
  29. 29.
    Skoog, F. and Tsui, C. (1948) Chemical control of growth and bud formation in tobacco stem segments and callus cultured in vitro. Am. J. Bot. 35, 782–787.CrossRefGoogle Scholar
  30. 30.
    Miller, C., Skoog, F., Von Saltza, M. H., and Strong, F. M. (1955) Kinetin, a cell division factorfrom desoxyribonucleic acid. J. Am. Chem. Soc. 77, 1392.CrossRefGoogle Scholar
  31. 31.
    Skoog, F. and Miller, C. O. (1957) Chemical regulation of growth and organ formation in plant tissue cultures in vitro. Symp. Soc. Exp. Biol. 11, 118–131.PubMedGoogle Scholar
  32. 32.
    Evans, D. A., Sharp, W. R., and Flick, C. E. (1981) Growth and behavior of cell cultures: Embryogenesis and organogenesis, in Plant Tissue Culture: Methods and Applications in Agriculture (Thorpe, T. A., ed.), Academic Press, New York, pp. 45–113.Google Scholar
  33. 33.
    Letham, D. S. (1974) Regulators of cell division in plant tissues. The cytokinins of coconut milk. Physiol. Plant. 32, 66–70.CrossRefGoogle Scholar
  34. 34.
    Reinert, J. (1958) Utersuchungen die Morphogenese an Gewebeku1turen. Ber. Dtsch. Bot. Ges. 71, 15.Google Scholar
  35. 35.
    Reinert, J. (1959) Uber die Kontrolle der Morphogenese und die Induktion von Adventivembryonen an Gewebekulturen aus Karotten. Planta 53, 318–333.CrossRefGoogle Scholar
  36. 36.
    Steward, F. C., Mapes, M. O., and Mears, K. (1958) Growth and organized development of cultured cells. II. Organization in cultures grown from freely suspended cells. Am. J. Bot. 45, 705–708.CrossRefGoogle Scholar
  37. 37.
    Muir, W.H., Hildebrandt, A.C., and Riker, A.J. (1954) Plant tissue cultures produced from single isolated plant cells. Science 119, 877–878.CrossRefGoogle Scholar
  38. 38.
    Muir, W. H., Hildebrandt, A. C., and Riker, A. J. (1958) The preparation, isolation and growth in culture of single cells from higher plants. Am. J. Bot. 45, 585–597.CrossRefGoogle Scholar
  39. 39.
    Jones, L. E., Hildebrandt, A. C., Riker, A. J., and Wu, J. H. (1960) Growth of somatic tobacco cells in microculture. Am. J. Bot. 47, 468–475.CrossRefGoogle Scholar
  40. 40.
    Bergmann, L. (1959) A new technique for isolating and cloning cells of higher piarits. Nature 184, 648–649.CrossRefGoogle Scholar
  41. 41.
    Kohlenbach, H. W. (1959) Streckungs-und Teilungswachstum isolierter Mesophyllzellen von Macleaya cordata (Wild.) R. Br. Naturwissenschaften 46, 116–117.CrossRefGoogle Scholar
  42. 42.
    Kohlenbach, H. W. (1966) Die Entwicklungspotenzen explantierter und isolierter Dauerzellen. I. Das Strechungs-und Teilungswachstum isolierter Mesophyllzellen von Macleaya cordata Z. Pflanzenphysiol. 55, 142–157.Google Scholar
  43. 43.
    Tulecke, W. and Nickell, L. G. (1959) Production of large amounts of plant tissue by submerged culture. Science 130, 863–864.PubMedCrossRefGoogle Scholar
  44. 44.
    Vasil, V. and Hildebrandt, A. C. (1965) Differentiation of tobacco plants from single, isolated cells in micro cultures. Science 150, 889–892.PubMedCrossRefGoogle Scholar
  45. 45.
    Heller, R. (1953) Recherches sur la nutrition minerale des tissus végétaux cultivé in vitro. Ann. Sci. Nat. Bot. BioI. Veg. 14, 1–223.Google Scholar
  46. 46.
    Nitsch, J. P. and Nitsch, C. (1956) Auxin-dependent growth of excised Helianthus tuberosus tissues. Am. J. Bot. 43, 839–851.CrossRefGoogle Scholar
  47. 47.
    Murashige, T. and Skoog, F. (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 15, 473–497.CrossRefGoogle Scholar
  48. 48.
    Gamborg, O. L., Murashige, T., Thorpe, T. A., and Vasil, I. K. (1976) Plant tissue culture media. In Vitro 12, 473–478.PubMedCrossRefGoogle Scholar
  49. 49.
    Morel, G. (1960). Producing virus-free cymbidium. Am. Orchid Soc. Bull. 29, 495–497.Google Scholar
  50. 50.
    Murashige, T. (1974) Plant propagation through tissue culture. Annu. Rev. Plant Physiol. 25, 135–166.CrossRefGoogle Scholar
  51. 51.
    White, P. R. (1934) Multiplication of the viruses of tobacco and Aucuba mosaics in growing excised tomato root tips. Phytopathology 24, 1003–1011.Google Scholar
  52. 52.
    Limasset, P. and Cornuet, P. (1949) Recherche du virus de la mosaïque du tabac dans les méristèmes des plantes infectées. C.R. Hebd. Seances Acad. Sci. 228, 1971–1972.Google Scholar
  53. 53.
    Morel, G. and Martin, C. (1952) Guérison de dahlias atteints d’une maladie á virus. C.R. Hebd. Seances Acad. Sc. 235, 1324–1325.Google Scholar
  54. 54.
    Quack, F. (1961) Heat treatment and substances inhibiting virus multiplication in meristem culture to obtain virus-free plants. Adv. Hortic. Sci. Their Appl., Proc. Int. Hortic. Congr. 15th, 1958 1, 144–148.Google Scholar
  55. 55.
    LaRue, C. D. (1942) The rooting of flowers in culture. Bull. Torrey Bot. Club 69, 332–341.CrossRefGoogle Scholar
  56. 56.
    Rangan, T. S. (1982) Ovary, ovule and nucellus culture, in Experimental Embryology of Vascular Plants (Johri, B. M., ed.), Springer-Verlag, Berlin, pp. 105–129.Google Scholar
  57. 57.
    LaRue, C. D. (1949) Culture of the endosperm of maize. Am. J. Bot. 36, 798.Google Scholar
  58. 58.
    Johri, B. M. and Bhojwani, S. S. (1965) Growth responses of mature endosperm in cultures. Nature 208, 1345–1347.CrossRefGoogle Scholar
  59. 59.
    Kanta, K., Rangaswamy, N. S., and Maheshwari, P. (1962) Test-tube fertilization in flowering plants. Nature 194, 1214–1217.CrossRefGoogle Scholar
  60. 60.
    Zenkteler, M., Misiura, E., and Guzowska, I. (1975) Studies on obtaining hybrid embryos in test tubes, in Form, Structure and Function in Plants (Mohan Ram, H. Y., Shaw, J. J., and Shaw, C. K., eds.), Sarita Prakashan, Meerut, India, pp. 180–187.Google Scholar
  61. 61.
    Tulecke, W. (1953) A tissue derived from the pollen of Ginkgo biloba. Science 117, 599–600.PubMedCrossRefGoogle Scholar
  62. 62.
    Yamada, T., Shoji, T., and Sinoto, Y. (1963) Formation of calli and free cells in a tissue culture of Tradescantia reflexa. Bot. Mag. 76, 332–339.Google Scholar
  63. 63.
    Guha, S. and Maheshwari, S. C. (1964) In vitro production of embryos from anthers of Datura. Nature 204, 497.CrossRefGoogle Scholar
  64. 64.
    Guha, S. and Maheshwari, S. C. (1966) Cell division and differentiation of embryos in the pollen grains of Datura in vitro. Nature 212, 97–98.CrossRefGoogle Scholar
  65. 65.
    Bourgin, J.P. and Nitch, J.P. (1967) Obtention de Nicotiana haploides à partir De’étamines cultivées in vitro. Ann. Physiol. Vég. 9, 377–382.Google Scholar
  66. 66.
    Cocking, E. C. (1960) A method for the isolation of plant protoplasts and vacuoles. Nature 187, 927–929.CrossRefGoogle Scholar
  67. 67.
    Takebe, I., Labib, C., and Melchers, G. (1971) Regeneration of whole plants from isolated mesophyll protoplasts of tobacco. Naturwissenschaften 58, 318–320.CrossRefGoogle Scholar
  68. 68.
    Carlson, P. S., Smith, H. H., and Dearing, R. D. (1972) Parasexual interspecific plant hybridization. Proc. Natl. Acad. Sci. USA 69, 2292–2294.PubMedCrossRefGoogle Scholar
  69. 69.
    Braun, A. C. (1941) Development of secondary tumor and tumor strands in the crown-gall of sunflowers. Phytopathology 31, 135–149.Google Scholar
  70. 70.
    Braun, A. C. and White, P. R. (1943) Bacteriological sterility of tissues derived from secondary crown-gall tumors. Phytopathology 33, 85–100.Google Scholar
  71. 71.
    Braun, A. C. (1950) Thermal inactivation studies on the tumor inducing principle in crown-gall. Phytopathology 40, 3.Google Scholar
  72. 72.
    Zaenen, I., van Larebeke, N., Touchy, H., Van Montagu, M., and Schell, J. (1974) Super-coiled circular DNA in crown-gall inducing Agrobacterium strains. J. Mol. BioI. 86, 109–127.CrossRefGoogle Scholar
  73. 73.
    Ledoux, L. (1965) Uptake of DNA by living cells. Prog. Nucleic Acid Res. Mol. Biol. 4, 231–267.PubMedCrossRefGoogle Scholar
  74. 74.
    Vasil, I. K. (ed.) (1994) Cell Culture and Somatic Cell Genetics of Plants, Vol. 1, Laboratory Procedures and Their Applications. Academic Press, New York.Google Scholar
  75. 75.
    Vasil, I. K. and Thorpe, T. A. (eds.) (1994) Plant Cell and Tissue Culture, Kluwer Acad. Publ., Dordrecht, The Netherlands.Google Scholar
  76. 76.
    Yeoman, M. M. and Street, H. E. (1977) General cytology of cultured cells, in Plant Tissue and Cell Culture (Street, H. E., ed.), Blackwell Scientific, Oxford, pp. 137–176.Google Scholar
  77. 77.
    Lindsey, K. and Yeoman, M. M. (1985) Dynamics of plant cell cultures, in Cell Culture and Somatic Cell Genetics of Plants (Vasil, I. K., ed.), Vol. 2, Academic Press, New York, pp. 61–101.Google Scholar
  78. 78.
    Fowke, L.C. (1986) Ultrastructural cytology of cultured plant tissues, cells, and protoplasts, in Cell Culture and Somatic Cell Genetics of Plants (Vasil, I. K., ed.), Vol. 3, Academic Press, New York, pp. 323–342.Google Scholar
  79. 79.
    Fowke, L. C. (1987) Investigations of cell structure using cultured cells and protoplasts, in Plant Tissue and Cell Culture (Green, C. E., Somers, D. A., Hackett, W. P., and Biesboer, D. D., eds.), A. R. Liss, New York, pp. 17–31.Google Scholar
  80. 80.
    D’Amato, F. (1978) Chromosome number variation in cultured cells and regenerated plants, in Frontiers of Plant Tissue Culture 1978 (Thorpe, T. A., ed.), Intl. Assoc. Plant Tissue Culture, Univ. of Calgary Printing Services, pp. 287–295.Google Scholar
  81. 81.
    Nagl, W., Pohl, J., and Radler, A. (1985) The DNA endoreduplication cycles, in The Cell Division Cycle in Plants (Bryant, J. A. and Francis, D., eds.), Cambridge University Press, Cambridge, pp. 217–232.Google Scholar
  82. 82.
    Yamada, Y., Fumihiko, S., and Hagimori, M. (1978) Photoautotropism in green cultured cells, in Frontiers of Plant Tissue Culture 1978 (Thorpe, T. A., ed.), Intl. Assoc. Plant Tissue Culture, Univ. of Calgary Printing Services, pp. 453–462.Google Scholar
  83. 83.
    Hüsemann, W. (1985) Photoautotrophic growth of cells in culture, in Cell Culture and Somatic Cell Genetics of Plants (Vasil, I. K., ed.), Vol. 2, Academic Press, New York, pp. 213–252.Google Scholar
  84. 84.
    Neumann, K.-H., Barz, W., and Reinhard, E. (eds.) (1985) Primary and Secondary Metabolism of Plant Cell Cultures, Springer-Verlag, Berlin.Google Scholar
  85. 85.
    Leonard, R. T. and Rayder, L. (1985) The use of protoplasts for studies on membrane transport in plants, in Plant Protoplasts (Fowke, L. C. and Constabel, F., eds.), CRC Press, Boca Raton, Florida, pp. 105–118.Google Scholar
  86. 86.
    Filner, P. (1978) Regulation of inorganic nitrogen and sulfur assimilation in cell suspension cultures, in Frontiers of Plant Tissue Culture 1978 (Thorpe, T. A., ed.), Intl. Assoc. Plant Tissue Culture, Univ. of Calgary Printing Services, pp. 437–442.Google Scholar
  87. 87.
    Fowler, M. W. (1978) Regulation of carbohydrate metabolism in cell suspension cultures, in Frontiers of Plant Tissue Culture 1978 (Thorpe, T. A., ed.), Intl. Assoc. Plant Tissue Culture, Univ. of Calgary Printing Services, pp. 443–452.Google Scholar
  88. 88.
    Bender, L., Kumar, A., and Neumann, K.-H. (1985) On the photosynthetic system and assimilate metabolism of Daucus and Arachis cell cultures, in Primary and Secondary Metabolism of Plant Cell Cultures (Neumann, K.-H., Barz, W., and Reinhard, E., eds.), Springer-Verlag, Berlin, pp. 24–42.Google Scholar
  89. 89.
    Herzbeck, H. and Husemann, W. (1985) Photosynthetic carbon metabolism in photoautotrophic cell suspension cultures of Chenopodium rubrum L. in Primary and Secondary Metabolism of Plant Cell Culture (Neumann, K.-H., Barz, W., and Reinhard, E., eds.), Springer-Verlag, Berlin, pp. 15–23.Google Scholar
  90. 90.
    Constabel, F. and Vasil, I. K. (eds.) (1987) Cell Culture and Somatic Cell Genetics of Plants, Vol. 4. Academic Press, New York.Google Scholar
  91. 91.
    Constabel, F. and Vasil, I. K. (eds.) (1988) Cell Culture and Somatic Cell Genetics of Plants, Vol. 5. Academic Press, New York.Google Scholar
  92. 92.
    Roberts, L. W. (1976) Cytodifferentiation in Plants: Xylogenesis as a Model System, Cambridge University Press, Cambridge.Google Scholar
  93. 93.
    Phillips, R. (1980) Cytodifferentiation. Int. Rev. Cytol., Suppl. 11A, 55–70.Google Scholar
  94. 94.
    Fukuda, H. and Komamine, A. (1985) Cytodifferentiation, in Cell Culture and Somatic Cell Genetics of Plants (Vasil, I. K., ed.), Vol. 2, Academic Press, New York, pp. 149–212.Google Scholar
  95. 95.
    Schell, J., van Montague, M., Holsters, M., et al. (1982) Plant cells transformed by modified Ti plasmids: A model system to study plant development, in Biochemistry of Differentiation and Morphogenesis, Springer-Verlag, Berlin, pp. 65–73.Google Scholar
  96. 96.
    Schell, J.S. (1987) Transgenic plants as tools to study the molecular organization of plant genes. Science 237, 1176–1183.CrossRefGoogle Scholar
  97. 97.
    Thorpe, T.A. (1980) Organogenesis in vitro: Structural, physiological, and biochemical aspects. Int. Rev. Cytol., Suppl. 11A, 71–111.Google Scholar
  98. 98.
    Tran Thanh Van, K., and Trinh, H. (1978) Morphogenesis in thin cell layers: Concept, methodology and results, in Frontiers of Plant Tissue Culture 1978 (Thorpe, T. A., ed.), Intl. Assoc. Plant Tissue Culture, Univ. of Calgary Printing Services, pp. 37–48.Google Scholar
  99. 99.
    Tran Thanh Van, K. (1980) Control of morphogenesis by inherent and exogenously applied factors in thin cell layers. Int. Rev. Cytol. Suppl. 11A, 175–194.Google Scholar
  100. 100.
    Murashige, T. (1979) Principles of rapid propagation, in Propagation of Higher Plants Through Tissue Culture: A Bridge Between Research and Application (Hughes, K. W., Henke, R., and Constantin, M., eds.), Tech. Information Center, U.S. Dept. of Energy, pp. 14–24.Google Scholar
  101. 101.
    Brown, D.C.W. and Thorpe, T.A. (1986) Plant regeneration by organogenesis, in Cell Culture and Somatic Cell Genetics of Plants (Vasil, I. K., ed.), Vol. 3, Academic Press, New York, pp. 49–65.Google Scholar
  102. 102.
    Thompson, M. R. and Thorpe, T. A. (1990) Biochemical perspectives in tissue culture for crop improvement, in Biochemical Aspects of Crop Improvement (Khanna, K. R., ed.), CRC Press, Boca Raton, Florida, pp. 327–358.Google Scholar
  103. 103.
    Ammirato, P.V. (1983) Embryogenesis, in Handbook of Plant Cell Culture (Evans, D. A., Sharp, W. R., Ammirato P. V., and Yamada, Y., eds.), Vol. 1, MacMillan, New York, pp. 82–123.Google Scholar
  104. 104.
    Thorpe, T. A. (1988) In vitro somatic embryogenesis. ISI Atlas of Science: Animal and Plant Sciences, pp. 81–88.Google Scholar
  105. 105.
    Nomura, K. and Komamine, A. (1985) Identification and isolation of single cells that produce somatic embryos at a high frequency in a carrot suspension culture. Plant Physiol. 79, 988–991.PubMedCrossRefGoogle Scholar
  106. 106.
    Butcher, D. N. (1977) Plant tumor cells, in Plant Tissue and Cell Culture (Street, H. E., ed.), Blackwell Scientific, Oxford, pp. 429–461.Google Scholar
  107. 107.
    Rottier, P. J. M. (1978) The biochemistry of virus multiplication in leaf cell protoplasts, in Frontiers of Plant Tissue Culture 1978 (Thorpe, T. A., ed.), Intl. Assoc. Plant Tissue Culture, Univ. of Calgary Printing Services, pp. 255–264.Google Scholar
  108. 108.
    Earle, E. D. (1978) Phytotoxin studies with plant cells and protoplasts, in Frontiers of Plant Tissue Culture 1978 (Thorpe, T. A., ed.), Intl. Assoc. Plant Tissue Culture, Univ. of Calgary Printing Services, pp. 363–372.Google Scholar
  109. 109.
    Miller, S. A. and Maxwell, D. P. (1983) Evaluation of disease resistance, in Handbook of Plant Cell Culture (Evans, D. A., Sharp, W. R., Ammirata, P. V., and Yamada, Y. eds.), Vol. 1, Macmillan, New York, pp. 853–879.Google Scholar
  110. 110.
    Yeung, E. C., Thorpe, T. A., and Jensen, C.J. (1981) In vitro fertilization and embryo culture, in Plant Tissue Culture: Methods and Applications in Agriculture (Thorpe, T. A., ed.), Academic Press, New York, pp. 253–271.Google Scholar
  111. 111.
    Zenkteler, M. (1984) In vitro pollination and fertilization, in Cell Culture and Somatic Cell Genetics of Plants (Vasil, I. K., ed.), Vol. 1, Academic Press, New York, pp. 269–275.Google Scholar
  112. 112.
    Raghavan, V. (1980) Embryo culture. Int. Rev. Cytol. Suppl. 11B, 209–240.Google Scholar
  113. 113.
    Collins, G. B. and Grosser, J. W. (1984) Culture of embryos, in Cell Culture and Somatic Cell Genetics of Plants (Vasil, I. K., ed.), Vol. 1, Academic Press, New York, pp. 241–257.Google Scholar
  114. 114.
    Hu, H., and Zeng, J. Z. (1984) Development of new varieties of anther culture, in Handbook of Plant Cell Culture (Ammirato, P. V., Evans, D. A., Sharp, W. R., and Yamada, Y., eds.), Vol. 3, Macmillan, New York, pp. 65–90.Google Scholar
  115. 115.
    San, L. H. and Gelebart, P. (1986) Production of gynogenetic haploids, in Cell Culture and Somatic Cell Genetics of Plants (Vasil, I. K., ), Vol. 3, Academic Press, New York, pp. 305–322.Google Scholar
  116. 116.
    Flick, C. E. (1983) Isolation of mutants from cell culture, in Handbook of Plant Cell Culture (Ammirato, P. V., Evans, D. A., Sharp, W. R., and Yamada, Y., eds.), Vol. I, Macmillan, New York, pp. 393–441.Google Scholar
  117. 117.
    Larkin, P. l., and Scowcroft, W. R. (1981) Somaclonal variation-a novel source of variability from cell culture for plant improvement. Theor. Appl. Genet. 60, 197–214.CrossRefGoogle Scholar
  118. 118.
    Larkin, P. J., Brettell, R. I. S., Ryan, S. A., Davies, P. A., Pallotta, M. A., and Scowcroft, W. R. (1985) Somaclonal variation: impact on plant biology and breeding strategies, in Biotechnology in Plant Science (Day, P., Zaitlin, M., and Hollaender, A., eds.), Academic Press, New York, pp. 83–100.Google Scholar
  119. 119.
    Scowcroft, W. R., Brettell, R. I. S., Ryan, S. A., Davies, P. A., and Pallotta, M. A. (1987) Somaclonal variation and genomic flux, in Plant Tissue and Cell Culture (Green, C. E., Somers, D. A., Hackett, W. P., and Biesboer, D. D., eds.), A. R. Liss, New York, pp. 275–286.Google Scholar
  120. 120.
    Jacobs, M., Negrutiu, I., Dirks, R., and Cammaerts, D. (1987) Selection programmes for isolation and analysis of mutants in plant cell cultures, in Plant Tissue and Cell Culture (Green, C. E., Somers, D. A., Hackett, W. P., and Biesboer, D. D., eds.), A. R. Liss, New York, pp. 243–264.Google Scholar
  121. 121.
    Hughes, K. (1983) Selection for herbicide resistance, in Handbook of Plant Cell Culture (Ammirato, P. V., Evans, D. A., Sharp, W. R., and Yamada, Y., eds.), Vol. 1, Macmillan, New York, pp. 442–460.Google Scholar
  122. 122.
    Ranch, J.P., Rick, S., Brotherton, J.E., and Widholm, J. (1983) Expression of 5-methyltryptophan resistance in plants regenerated from resistant cell lines of Datura innoxia. Plant Physiol. 71, 136–140.PubMedCrossRefGoogle Scholar
  123. 123.
    Binding, H. (1986) Regeneration from protoplasts, in Cell Culture and Somatic Cell Genetics of Plants (Vasil, I. K., ed.), Vol. 3, Academic Press, New York, pp. 259–274.Google Scholar
  124. 124.
    Evans, D. A., Sharp, W. R., and Bravo, J. E. (1984) Cell culture methods for crop improvement, in Handbook of Plant Cell Culture (Sharp, W. R., Evans, D. A., Ammirato, P. V., and Yamada, Y., eds.), Vol. 2, Macmillan, New York, pp. 47–68.Google Scholar
  125. 125.
    Schieder, 0. and Kohn, H. (1986) Protoplast fusion and generation of somatic hybrids, in Cell Culture and Somatic Cell Genetics of Plants (Vasil, I. K., ed.), Vol. 3, Academic Press, New York, pp. 569–588.Google Scholar
  126. 126.
    Chetrit, P., Mathieu, C., Vedel, F., Pelletier, G., and Primard, C. (1985) Mitochondrial DNA polymorphism induced by protoplast fusion in Cruciferae. Theor. Appl. Genet. 69, 361–366.CrossRefGoogle Scholar
  127. 127.
    Potrykus, I., Shillito, R. D., Saul, M., and Paszkowski, J. (1985) Direct gene transfer: State of the art and future potential. Plant Mol. Biol. Rep. 3, 117–128.CrossRefGoogle Scholar
  128. 128.
    Deshayes, A., Herrera-Estrella, L., and Caboche, M. (1985) Liposome-mediated transformation of tobacco mesophyll protoplasts by an Escherichia coli plasmid. EMBO J. 4, 2731–2739.PubMedGoogle Scholar
  129. 129.
    Crossway, A., Oakes, J. V., Irvine, J. M., Ward, B., Knauf, V. C., and Shewmaker, C. K. (1986) Integration of foreign DNA following microinjection of tobacco mesophyll protoplasts. Mol. Gen. Genet. 202, 179–185.CrossRefGoogle Scholar
  130. 130.
    Klein, T. M., Wolf, B. D., Wu, R., and Sanford, J. C. (1987) High-velocity microprojectiles for delivering nucleic acids into living cells. Nature 327, 70–73.CrossRefGoogle Scholar
  131. 131.
    DeBlock, M., Herrera-Estrella, L., van Montague, M., Schell, J., and Zambryski, P. (1984) Expression of foreign genes in regenerated plants and in their progeny. EMBO J. 3, 1681–1689.Google Scholar
  132. 132.
    Borsch, R. B., Fraley, R. T., Rogers, S. G., Sanders, F. R., Lloyd, A., and Boffmann, N. (1984) Inheritance of functional foreign genes in plants. Science 223, 496–498.CrossRefGoogle Scholar
  133. 133.
    Gasser, C. S. and Fraley, R. T. (1989) Genetically engineering plants for crop improvement. Science 244, 1293–1299.PubMedCrossRefGoogle Scholar
  134. 134.
    Uchimiya, H., Handa, T., and Brar, D. S. (1989) Transgenic plants. J. Biotech. 12, 1–20.CrossRefGoogle Scholar
  135. 135.
    Kartha, K.K. (1981) Meristem culture and cryopreservation methods and applications, in Plant Tissue Culture: Methods and Applications in Agriculture (Thorpe, T. A., ed.), Academic Press, New York, pp. 181–211.Google Scholar
  136. 136.
    Dodds, J. (1989) Tissue culture for germplasm management and distribution, in Strengthening Collaboration in Biotechnology: International Agricultural Research and the Private Sector (Cohen, J. I., ed.), Bureau of Science and Technology, AID, Washington, D.C. pp. 109–128.Google Scholar
  137. 137.
    Withers, L. A. (1985) Cryopreservation of cultured cells and meristems, in Cell Culture and Somatic Cell Genetics of Plants (Vasil, I. K., ed.), Vol. 2, Academic Press, New York, pp. 253–316.Google Scholar
  138. 138.
    Murashige, T. (1978) The impact of plant tissue culture on agriculture, in Frontiers of Plant Tissue Culture 1978 (Thorpe, T. A., ed.), Intl. Assoc. Plant Tissue Culture, Univ. of Calgary Printing Services, pp. 15–26.Google Scholar
  139. 139.
    Conger, B. V., ed. (1981) Cloning Agricultural Plants Via In Vitro Techniques. CRC Press, Boca Raton, Florida.Google Scholar
  140. 140.
    Murashige, T. (1990) Plant propagation by tissue culture: practice with unrealized potential, in Handbook of Plant Cell Culture (Ammirato, P. V., Evans, D. A., Sharp, W. R., and Bajaj, Y. P. S., eds.), Vol. 5, McGraw-Hill, New York, pp. 3–9.Google Scholar
  141. 141.
    Zimmerman, R. H. (1986) Regeneration in woody ornamentals and fruit trees, in Cell Culture and Somatic Cell Genetics of Plants (Vasil, I. K., ed.), Vol. 3, Academic Press, New York, pp. 243–258.Google Scholar
  142. 142.
    Zenk, M. H. (1978) The impact of plant cell culture on industry, in Frontiers of Plant Tissue Culture 1978 (Thorpe, T. A., ed.), Intl. Assoc. Plant Tissue Culture, Univ. of Calgary Printing Services, pp. 1–13.Google Scholar
  143. 143.
    Wink, M. (1987) Physiology of the accumulation of secondary metabolites with special reference to alkaloids, in Cell Culture and Somatic Cell Genetics of Plants (Constabel, F. and Vasil, I. K., eds.), Vol. 4, Academic Press, New York, pp. 17–42.Google Scholar
  144. 144.
    Dougall, D. K. (1987) Primary metabolism and its regulation, in Plant Tissue and Cell Culture (Green, C. E., Somers, D. A., Hackett, W. P., and Biesboer, D. D., eds.), A. R. Liss, New York, pp. 97–117.Google Scholar
  145. 145.
    Kemp, H. A. and Morgan, M. R. A. (1987) Use of immunoassays in the detection of plant cell products, in Cell Culture and Somatic Cell Genetics of Plants (Constabel, F. and Vasil, I. K., eds.), Vol. 4, Academic Press, New York, pp. 287–302.Google Scholar
  146. 146.
    Widholm, J. M. (1987) Selection of mutants which accumulate desirable secondary products, in Cell Culture and Somatic Cell Genetics of Plants (Constabel, F. and Vasil, I. K., eds.), Vol. 4, Academic Press, New York, pp. 125–137.Google Scholar
  147. 147.
    Eilert, U. (1987) Elicitation: Methodology and aspects of application, in Cell Culture and Somatic Cell Genetics of Plants (Constabel, F. and Vasil, I. K., eds.), Vol. 4, Academic Press, New York, pp. 153–196.Google Scholar
  148. 148.
    Kurz, W.G.W. (1988) Semicontinuous metabolite production through repeated elicitation of plant cell cultures: A novel process, in Plant Biotechnology (Mabry, T. J., ed.), IC2 Institute, Austin, pp. 93–103.Google Scholar
  149. 149.
    Brodelius, P. (1985) The potential role of immobilisation in plant cell biotechnology. Trends Biotechnol. 3, 280–285.CrossRefGoogle Scholar
  150. 150.
    Yeoman, M. M. (1987) Techniques, characteristics, properties, and commercial potential of immobilized plant cells, in Cell Culture and Somatic Cell Genetics of Plants (Constabel, F. and Vasil, I. K., eds.), Vol. 4, Academic Press, New York, pp. 197–215.Google Scholar
  151. 151.
    Fowler, M.W. (1987) Process systems and approaches for large-scale plant cell culture, in Plant Tissue and Cell Culture (Green, C. E., Somers, D. A., Hackett, W. P., and Biesboer, D. D., eds.), A. R. Liss, New York, pp. 459–471.Google Scholar
  152. 152.
    Beiderbeck, R. and Knoop, B. (1987) Two-phase culture, in Cell Culture and Somatic Cell Genetics of Plants (Constabel, F. and Vasil, I. K., eds.), Vol. 4, Academic Press, New York, pp. 255–266.Google Scholar
  153. 153.
    Fujita, Y. and Tabata, M. (1987) Secondary metabolites from plant cells—pharmaceutical applications and progress in commercial production, in Plant Tissue and Cell Culture (Green, C. E., Somers, D. A., Hackett, W. P., and Biesboer, D. D., eds.), A. R. Liss, New York, pp. 169–185.Google Scholar
  154. 154.
    Vasil, I. K. and Vasil, V. (1994) In vitro culture of cereals and grasses, in Plant Cell and Tissue Culture (Vasil, I. K. and Thorpe, T. A., eds.), Kluwer Acad. Publ., Dordrecht, The Netherlands, pp. 293–312.Google Scholar
  155. 155.
    Davey, M. R., Kumar, V., and Hammatt, N. (1994) In vitro culture of legumes, in Plant Cell and Tissue Culture (Vasil, I. K. and Thorpe, T. A., eds.), Kluwer Acad. Publ., Dordrecht, The Netherlands, pp. 313–329.Google Scholar
  156. 156.
    Reynolds, J. F. (1994) In vitro culture of vegetable crops, in Plant Cell and Tissue Culture (Vasil, I. K. and Thorpe, T. A., eds.), Kluwer Acad. Publ., Dordrecht, The Netherlands, pp. 331–362.Google Scholar
  157. 157.
    Jones, M. G. K. (1994) In vitro culture of potato, in Plant Cell and Tissue Culture (Vasil, I. K. and Thorpe, T. A., eds.), Kluwer Acad. Publ., Dordrecht, The Netherlands, pp. 363–378.Google Scholar
  158. 158.
    Krikorian, A. D. (1994) In vitro culture of root and tuber crops, in Plant Cell and Tissue Culture (Vasil, I. K. and Thorpe, T. A., eds.), Kluwer Acad. Publ., Dordrecht, The Netherlands, pp. 379–411.Google Scholar
  159. 159.
    Palmer, C. E. and Keller, W. A. (1994) In vitro culture of oilseeds, in Plant Cell and Tissue Culture (Vasil, I. K. and Thorpe, T. A., eds.), Kluwer Acad. Publ., Dordrecht, The Netherlands, pp. 413–455.Google Scholar
  160. 160.
    Zimmerman, R. H. and Swartz, H. J. (1994) In vitro culture of temperate fruits, in Plant Cell and Tissue Culture (Vasil, I. K. and Thorpe, T. A., eds.), Kluwer Acad. Publ., Dordrecht, The Netherlands, pp. 457–474.Google Scholar
  161. 161.
    Grosser, I. W. (1994) In vitro culture of tropical fruits, in Plant Cell and Tissue Culture (Vasil, I. K. and Thorpe, T. A., eds.), Kluwer Acad. Publ., Dordrecht, The Netherlands, pp. 475–496.Google Scholar
  162. 162.
    Krikorian, A. D. (l994) In vitro culture of plantation crops, in Plant Cell and Tissue Culture (Vasil, I. K. and Thorpe, T. A., eds.), Kluwer Acad. Publ., Dordrecht, The Netherlands, pp. 497–537.Google Scholar
  163. 163.
    Harry, I. S. and Thorpe, T. A. (1994) In vitro culture of forest trees, in Plant Cell and Tissue Culture (Vasil, I. K. and Thorpe, T. A., eds.), Kluwer Acad. Publ., Dordrecht, The Netherlands, pp. 539–560.Google Scholar
  164. 164.
    Debergh, P. (1994) In vitro culture of ornamentals, in Plant Cell and Tissue Culture (Vasil, I. K. and Thorpe, T. A., eds.), Kluwer Acad. Publ., Dordrecht, The Netherlands, pp. 561–573.Google Scholar
  165. 165.
    Karp, A. (1994) Origins, causes and uses of variation in plant tissue cultures, in Plant Cell and Tissue Culture (Vasil, I. K. and Thorpe, T. A., eds.), Kluwer Acad. Publ., Dordrecht, The Netherlands, pp. 139–151.Google Scholar
  166. 166.
    Dix, P. J. (1994) Isolation and characterisation of mutant cell lines, in Plant Cell and Tissue Culture (Vasil, I. K. and Thorpe, T. A., eds.), Kluwer Acad. Publ., Dordrecht, The Netherlands, pp. 119–138.Google Scholar
  167. 167.
    Feher, A. and Dudits, D. (1994) Plant protoplasts for cell fusion and direct DNA uptake: culture and regeneration systems, in Plant Cell and Tissue Culture (Vasil, I. K. and Thorpe, T. A., eds.), Kluwer Acad. Publ., Dordrecht, The Netherlands, pp. 71–118.Google Scholar
  168. 168.
    Kartha, K. K. and Engelmann, F. (1994) Cryopreservation and geffi1plasm storage: In Plant Cell and Tissue Culture (Vasil, I. K. and Thorpe, T. A., eds.), Kluwer Acad. Publ., Dordrecht. The Netherlands, pp. 195–230.Google Scholar
  169. 169.
    Redenbaugh, K., ed. (1993) Synseeds: Applications of Synthetic Seeds to Crop Improvement. CRC Press, Boca Raton, FL.Google Scholar
  170. 170.
    Lowe, K. C., Davey, M. R., and Power, J. B. (1996) Plant tissue culture: past, present and future. Plant Tiss. Cult. Biotechnol. 2, 175–186.Google Scholar
  171. 171.
    Kong, L., Attree, S. M., Evans, D. E., Binarova, P., Yeung, E. C., and Fowke, L. C. (1998) Somatic embryogenesis in white spruce: studies of embryo development and cell biology, in Somatic Embryogenesis in Woody Plants (Jain, S. M. and Gupta, P. K., eds.), Vol. 4, Kluwer Acad. Publ., Dordrecht, The Netherlands, pp. 1–28.Google Scholar
  172. 172.
    Kaeppler, S. M. and Phillips, R. L. (1993) DNA methylation and tissue cultureinduced variation in plants. In Vitro Cell. Dev. Biol. 29P, 125–130.Google Scholar
  173. 173.
    Komamine, A., Ito, M., and Kawahara, R. (1993) Cell culture systems as useful tools for investigation of developmental biology in higher plants: analysis of mechanisms of the cell cycle and differentiation using plant cell cultures, in Advances in Developmental Biology and Biotechnology of Higher Plants (Soh, W. Y., Liu, J. R., and Komamine, A., eds.), Proceedings First Asia Pacific Conference on Plant Cell and Tissue Culture, held in Taedok Science Town, Taejon, Korea, 5–9 Sept. 1993,. The Korean Society of Plant Tissue Culture, pp. 289–310.Google Scholar
  174. 174.
    Trehin, C., Planchais, S., Glab, N., Perennes, C., Tregear, J., and Bergounioux, C. (1998) Cell cycle regulation by plant growth regulators: involvement of auxin and cytokinin in the re-entry of Petunia protoplasts into the cell cycle. Planta 206, 215–224.PubMedCrossRefGoogle Scholar
  175. 175.
    Gaspar, T. (1995) The concept of cancer in in vitro plant cultures and the implication of habituation to hormones and hyperhydricity. Plant Tiss. Cult. Biotechnol. 1, 126–136.Google Scholar
  176. 176.
    Suguira, M. (1997) In vitro transcription systems from suspension-cultured cells. Annu. Rev. Plant Physiol. Plant Mol. Biol. 48, 383–398.CrossRefGoogle Scholar
  177. 177.
    Stitt, M. and Sonnewald, U. (1995) Regulation of carbohydrate metabolism in transgenics. Annu. Rev. Plant Physiol. Plant Mol. Biol. 46, 341–368.CrossRefGoogle Scholar
  178. 178.
    Kutchin, T. M. (1998) Molecular genetics of plant alkaloid biosynthesis, in The Alkaloids (Cordell, G., ed.), Vol. 50, Academic Press, San Diego, pp. 257–316.Google Scholar
  179. 179.
    Verpoorte, R., van der Heijden, R., ten Hoopen, H. J. G., and Memclink, J. (1998) Metabolic engineering for the improvement of plant secondary metabolite production. Plant Tiss. Cult. Biotechnol. 4, 3–20.Google Scholar
  180. 180.
    The Plant Cell, Special Issue, July 1997.Google Scholar
  181. 181.
    Fukuda, H. (1997) Xylogenesis: initiation, progression, and cell death. Annu. Rev. Plant Physiol. Plant Mol. Biol. 47, 299–325.CrossRefGoogle Scholar
  182. 182.
    Thorpe, T.A. (1993) Physiology and biochemistry of shoot bud formation in vitro, in Advances in Developmental Biology and Biotechnology of Higher Plants (Soh, W. Y., Liu, J. R., and Komamine, A., eds.) Proceedings First Asia Pacific Conference on Plant Cells and Tissue Culture, held in Taedok Science Town, Taejon, Korea, 5–9 Sept. 1993, The Korean Society of Plant Tissue Culture, pp. 210–224.Google Scholar
  183. 183.
    Joy IV, R. W. and Thorpe, T. A. (1999) Shoot morphogenesis: Structure, physiology, biochemistry and molecular biology, in Morphogenesis in Plant Tissue Cultures (Soh W. Y., and Bhojwani, S. S., eds.), Kluwer Acad. Publ., Dordrecht, The Netherlands, pp. 171–214.Google Scholar
  184. 184.
    Nomura, K. and Komamine, A. (1995). Physiological and biochemical aspects of somatic embryogenesis, in In Vitro Embryogenesis in Plants (Thorpe, T. A., ed.), Kluwer Acad. Publ., Dordrecht, The Netherlands, pp. 249–265.Google Scholar
  185. 185.
    Dudits, D., Györgyey, J., Bögre, L., and Bakó, L. (1995) Molecular biology of somatic embryogenesis, in In Vitro Embryogenesis in Plants (Thorpe, T. A., ed.), Kluwer Acad. Publ., Dordrecht, The Netherlands, pp. 267–308.Google Scholar
  186. 186.
    Thorpe, T. A. and Stasolla, C. (2001) Somatic embryogenesis, in Current Trends in the Embryology of Angiosperms (Bhojwani S. S. and Soh, W. Y., eds.), Kluwer Acad. Publ., Dordrecht, The Netherlands, pp. 279–236.Google Scholar
  187. 187.
    Hinchee, M. A. W., Corbin, D. R., Armstrong, C. L., et al. (1994) Plant transformation, in Plant Cell and Tissue Culture (Vasil, I. K., and Thorpe, T. A., eds.), Kluwer Acad. Publ., Dordrecht, The Netherlands, pp. 231–270.Google Scholar
  188. 188.
    Fraley, R. T., Rogers, S. G., Borsch, R. B., et al. (1985) The SEV system: a new disarmed Ti plasmid vector system for plant transformation. Bio/Technol. 3, 629–635.CrossRefGoogle Scholar
  189. 189.
    Horsch, R. B., Fry, J., Hoffman, N., et al. (1985) A simple and general method for transferring genes into plants. Science 227, 1229–1231.CrossRefGoogle Scholar
  190. 190.
    Cloutier, S. and Landry, B. S. (1994) Molecular markers applied to plant tissue culture. In Vitro Cell. Dev. Biol. 31P, 32–39.Google Scholar
  191. 191.
    Sanford, J. C. (2000) The development of the biolistic process. In Vitro Cell. Dev. Biol. Plant 36, 303–308.CrossRefGoogle Scholar
  192. 192.
    Fraley, R. (1992) Sustaining the food supply. Bio/Technol. 10, 40–43.CrossRefGoogle Scholar
  193. 193.
    Potrykus, I. (2001) The Golden Rice tale. In Vitro Cell. Dev. Biol.-Plant 37, 93–100.CrossRefGoogle Scholar
  194. 194.
    Altman, A., Ziv, M., and Izhar, S. (eds.) (1999) Plant Biotechnology and In Vitro Biology in the 21st Century. Proceedings of the IXth International Congress of the International Association for Plant Tissue Culture and Biotechnology, Jerusalem, Israel, 14–19 June, 1998. Kluwer Acad. Publ., Dordrecht, The Netherlands.Google Scholar
  195. 195.
    Vasil, I. K. (ed.) (2003) Plant Biotechnology 2002 and Beyond. Proceedings of the 10th IAPTC⇐p;B Congress, June 23–28, 2002, Orlando, FL, USA. Kluwer Acad. Publ., Dordrecht, The Netherlands.Google Scholar
  196. 196.
    Schell, J. (1995) Progress in plant sciences is our best hope to achieve an economically rewarding, sustainable and environmentally stable agriculture. Plant Tiss. Cult. Biotechnol. 1, 10–12.Google Scholar

Copyright information

© Humana Press Inc. 2006

Authors and Affiliations

  • Trevor A. Thorpe
    • 1
  1. 1.Department of Biological ScienceUniversity of CalgaryCalgaryCanada

Personalised recommendations