Skip to main content

Yeast Fluorescence Microscopy

  • Protocol

Part of the book series: Methods in Molecular Biology ((MIMB,volume 313))

Abstract

Fluorescence microscopy is the essential technique for investigation of the intracellular distribution of macromolecules and various organelles also in yeast cells. In this chapter, detailed practical procedures for fluorescence microscopic observations developed or adopted in our laboratory are described. These include labeling of the cell wall and chitin, F-actin structures, nuclear and mitochondrial DNA, and two different procedures for investigation of yeast cells by immunofluorescence. In addition, our experience with multicolor labeling experiments is introduced and discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Kilmartin, J. V. and Adams, A. E. M. (1984) Structural rearrangements of tubulin and actin during the cell cycle of the yeast Saccharomyces. J. Cell Biol. 98, 922–933.

    Article  PubMed  CAS  Google Scholar 

  2. Pringle, J. R., Adams, A. E. M., Drubin, D. G., and Haarer, B. K. (1991) Immunofluorescence methods for yeast. Methods Enzymol. 194, 565–602.

    Article  PubMed  CAS  Google Scholar 

  3. Hasek, J. and Streiblová, E. (1996) Fluorescence microscopy methods, in Methods in Molecular Biology (Evans, I. H. and Walker, J. M., eds.), Humana Press, Totowa, NJ, pp. 11–15.

    Google Scholar 

  4. Kohlwein, S. D. (2000) The beauty of the yeast: live cell microscopy at the limits of optical resolution. Microscopy Res. Tech. 51, 511–529.

    Article  CAS  Google Scholar 

  5. Burd, C. G. (2000) Visualizing protein dynamics in yeast with green fluorescent protein. Methods Enzymol. 327, 61–69.

    Article  PubMed  CAS  Google Scholar 

  6. Fritze, C. E. and Anderson, T. R. (2000) Epitope tagging: general method for tracking recombinant proteins. Methods Enzymol. 327, 3–16.

    Article  PubMed  CAS  Google Scholar 

  7. Prein, B., Natter, K., and Kohlwein, S. D. (2000) A novel strategy for constructing N-terminal chromosomal fusions to green fluorescent protein in the yeast Saccharomyces cerevisiae. FEBS Lett. 485, 29–34.

    Article  PubMed  CAS  Google Scholar 

  8. Vida, T. A. and Emr, S. D. (1995) A new vital stain for visualizing vacuolar membrane dynamics and endocytosis in yeast. J. Cell Biol. 128, 779–792.

    Article  PubMed  CAS  Google Scholar 

  9. Koning, A. J., Lum, P. Y., Williams, J. M., and Wright, R. (1993) DiOC6 staining reveals organelle structure and dynamics in living yeast cells. Cell Motil Cytoskeleton 25, 111–128.

    Article  PubMed  CAS  Google Scholar 

  10. Bereiter-Hahn, J., Seipel, K. H., Voth, M., and Ploem, J. S. (1983) Fluorimetry of mitochondria in cells vitally stained with DASPMI or rhodamine 6 GO. Cell Biochem Funct. 1, 147–155.

    Article  PubMed  CAS  Google Scholar 

  11. Streiblová E. (1984) The yeast cell wall: a marker system for cell cycle controls, in The Microbial Cell Cycle (Nurse, P. and Streiblová., E. eds.), CRC Press, Boca Raton, FL.

    Google Scholar 

  12. Wieland, T. (1986) Peptides in Poisonous Amanita Mushrooms. Springer Verlag, Heidelberg, FRG.

    Book  Google Scholar 

  13. Jirincová, H., Vavricková, P., Palecek, J., and Hasek, J. (1998) A new monoclonal antibody against Rpg1p. Folia Biol. 44, 73.

    Google Scholar 

  14. Valá, L., Trachsel, H., Hasek, J., and Ruis, H. (1998) Rpg1p, the Saccharomyces cetrevisiae homologue of the largest subunit of mammalian translation initiation factor 3, is required for translational activity. J. Biol. Chem. 273, 21253–21260.

    Article  Google Scholar 

  15. Valá, L., Hasek, J., Nielsen, K. H., and Hinnebusch, A.G. (2001) Dual function of eIF3j/Hcr1p in processing 20S Pre-rRNA and translation initiation. J. Biol. Chem. 276, 43351–43360.

    Article  Google Scholar 

  16. Nagata, Y. and Burger, M. M. (1974) Wheat germ agglutinin. Molecular characteristics and specificity for sugar binding. J. Biol. Chem. 249, 3116–3122.

    PubMed  CAS  Google Scholar 

  17. Kohlwein, S. D., Eder, S., Oh, C. S., Martin, C. E., Gable, K., Bacikova, D., and Dunn, T. (2001) Tsc13p is required for fatty acid elongation and localizes to a novel structure at the nuclear-vacuolar interface in Saccharomyces cerevisiae. Mol Cell Biol. 21, 109–125.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Hašek, J. (2006). Yeast Fluorescence Microscopy. In: Xiao, W. (eds) Yeast Protocol. Methods in Molecular Biology, vol 313. Humana Press, Totowa, NJ. https://doi.org/10.1385/1-59259-958-3:085

Download citation

  • DOI: https://doi.org/10.1385/1-59259-958-3:085

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-58829-437-1

  • Online ISBN: 978-1-59259-958-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics