Methods for Measuring Type I Collagen Synthesis In Vitro

  • David C. Rishikof
  • Ping-Ping Kuang
  • Mangalalaxmy Subramanian
  • Ronald H. Goldstein
Part of the Methods in Molecular Medicine book series (MIMM, volume 117)


The excess accumulation of type I collagen within tissues leads to organ dysfunction and occurs as a result of an imbalance between synthesis and degradation. This chapter outlines several methods to assess the in vitro production of type I collagen that are employed in our laboratory. We describe Western immunoblotting of intact α1(I) collagen using antibodies directed to α1(I) collagen amino and carboxyl propeptides. The measurement of α1(I) collagen mRNA levels using real-time polymerase chain reaction is then outlined. Finally, methods to determine the transcriptional regulation of α1(I) collagen using a nuclear run-on assay are described.

Key Words

Type I collagen Western immunoblot real-time PCR nuclear run-on assay 



This work was supported by the National Institutes of Health grants K08-HL04232 and R01-HL66547 and the VA Research Enhancement Award Program.


  1. 1.
    Prockop, D. J., Kivirikko, K. I., Tuderman, L., and Guzman, N. A. (1979) The biosynthesis of collagen and its disorders (second of two parts). N. Engl. J. Med. 301(2), 77–85.PubMedCrossRefGoogle Scholar
  2. 2.
    Prockop, D. J., Kivirikko, K. I., Tuderman, L., and Guzman, N. A. (1979) The biosynthesis of collagen and its disorders (first of two parts). N. Engl. J. Med. 301(1), 13–23.PubMedCrossRefGoogle Scholar
  3. 3.
    Vuorio, E. and de Crombrugghe, B. (1990) The family of collagen genes. Annu. Rev. Biochem. 59, 837–872.PubMedCrossRefGoogle Scholar
  4. 4.
    Raghow, R., Lurie, S., Seyer, J. M., and Kang, A. H. (1985) Profiles of steady state levels of messenger RNAs coding for type I procollagen, elastin, and fibronectin in hamster lungs undergoing bleomycin-induced interstitial pulmonary fibrosis. J. Clin. Invest. 76(5), 1733–1739.PubMedCrossRefGoogle Scholar
  5. 5.
    Penttinen, R. P., Kobayashi, S., and Bornstein, P. (1988) Transforming growth factor beta increases mRNA for matrix proteins both in the presence and in the absence of changes in mRNA stability. Proc. Natl. Acad. Sci. USA 85(4), 1105–1108.PubMedCrossRefGoogle Scholar
  6. 6.
    Stefanovic, B., Hellerbrand, C., Holcik, M., Briendl, M., Aliebhaber, S., and Brenner, D. A. (1997) Posttranscriptional regulation of collagen alpha1(I) mRNA in hepatic stellate cells. Mol. Cell Biol. 17(9), 5201–5209.PubMedGoogle Scholar
  7. 7.
    Doege, K. J. and Fessler, J. H. (1986) Folding of carboxyl domain and assembly of procollagen I. J. Biol. Chem. 261(19), 8924–8935.PubMedGoogle Scholar
  8. 8.
    Wilson, R., Lees, J. F., and Bulleid, N. J. (1998) Protein disulfide isomerase acts as a molecular chaperone during the assembly of procollagen. J. Biol. Chem. 273(16), 9637–9643.PubMedCrossRefGoogle Scholar
  9. 9.
    Rocnik, E. F., van d, V., Cao, H., Hegele, R. A., and Pickering, J. G. (2002) Functional linkage between the endoplasmic reticulum protein Hsp47 and procollagen expression in human vascular smooth muscle cells. J. Biol. Chem. 277(41), 38,571–38,578.PubMedCrossRefGoogle Scholar
  10. 10.
    Kivirikko, K. I., Myllyla, R., and Pihlajaniemi, T. (1989) Protein hydroxylation: prolyl 4-hydroxylase, an enzyme with four cosubstrates and a multifunctional subunit. FASEB J. 3(5), 1609–1617.PubMedGoogle Scholar
  11. 11.
    Berg, R. A., Steinmann, B., Rennard, S. I., and Crystal, R. G. (1983) Ascorbate deficiency results in decreased collagen production: under-hydroxylation of proline leads to increased intracellular degradation. Arch Biochem. Biophys. 226(2), 681–686.PubMedCrossRefGoogle Scholar
  12. 12.
    Rowe, L. B. and Schwarz, R. I. (1983) Role of procollagen mRNA levels in controlling the rate of procollagen synthesis. Mol. Cell Biol. 3(2), 241–249.PubMedGoogle Scholar
  13. 13.
    Schwarz, R. I. (1985) Procollagen secretion meets the minimum requirements for the rate-controlling step in the ascorbate induction of procollagen synthesis. J. Biol. Chem. 260(5), 3045–3049.PubMedGoogle Scholar
  14. 14.
    Fitzgerald, J., Lamande, S. R., and Bateman, J. F. (1999) Proteasomal degradation of unassembled mutant type I collagen pro-alpha1(I) chains. J. Biol. Chem. 274(39), 27,392–27,398.PubMedCrossRefGoogle Scholar
  15. 15.
    Rishikof, D. C., Ricupero, D. A., Poliks, C. F., and Goldstein, R. H. (1999) Amino acid availability regulates type I procollagen accumulation in human lung fibroblasts. J. Cell Biochem. 75(1), 130–137.PubMedCrossRefGoogle Scholar
  16. 16.
    Bienkowski, R. S. (1984) Collagen degradation in human lung fibroblasts: extent of degradation, role of lysosomal proteases, and evaluation of an alternate hypothesis. J. Cell Physiol. 121(1), 152–158.PubMedCrossRefGoogle Scholar
  17. 17.
    Rennard, S. I., Stier, L. E., and Crystal, R. G. (1982) Intracellular degradation of newly synthesized collagen. J. Invest. Dermatol. 79(Suppl 1), 77s–82s.PubMedCrossRefGoogle Scholar
  18. 18.
    Berg, R. A., Schwartz, M. L., and Crystal, R. G. (1980) Regulation of the production of secretory proteins: intracellular degradation of newly synthesized “defective” collagen. Proc. Natl. Acad. Sci. USA 77(8), 4746–4750.PubMedCrossRefGoogle Scholar
  19. 19.
    Barile, F. A., Guzowski, D. E., Ripley, C., Siddiqi, Z. A., and Bienkowski, R. S. (1990) Ammonium chloride inhibits basal degradation of newly synthesized collagen in human fetal lung fibroblasts. Arch Biochem. Biophys. 276(1), 125–131.PubMedCrossRefGoogle Scholar
  20. 20.
    Berg, R. A., Schwartz, M. L., Rome, L. H., and Crystal, R. G. (1984) Lysosomal function in the degradation of defective collagen in cultured lung fibroblasts. Biochemistry 23(10), 2134–2138.PubMedCrossRefGoogle Scholar
  21. 21.
    Fisher, L. W., Stubbs, J. T., III, and Young, M. F. (1995) Antisera and cDNA probes to human and certain animal model bone matrix noncollagenous proteins. Acta. Orthop. Scand. 266(Suppl), 61–65.Google Scholar
  22. 22.
    Fisher, L. W., Lindner, W., Young, M. F., and Termine, J. D. (1989) Synthetic peptide antisera: their production and use in the cloning of matrix proteins. Connect Tissue Res. 21(1–4), 43–48.PubMedCrossRefGoogle Scholar
  23. 23.
    Ririe, K. M., Rasmussen, R. P., and Wittwer, C. T. (1997) Product differentiation by analysis of DNA melting curves during the polymerase chain reaction. Anal. Biochem. 245(2), 154–160.PubMedCrossRefGoogle Scholar
  24. 24.
    Barsh, G. S., Roush, C. L., and Gelinas, R. E. (1984) DNA and chromatin structure of the human alpha 1 (I) collagen gene. J. Biol. Chem. 259(23), 14,906–14,913.PubMedGoogle Scholar
  25. 25.
    Pfarr, D. S., Rieser, L. A., Woychik, R. P., Rottman, F. M., Rosenberg, M., and Reff, M. E. (1986) Differential effects of polyadenylation regions on gene expression in mammalian cells. DNA 5(2), 115–122.PubMedCrossRefGoogle Scholar
  26. 26.
    Maatta, A., Ekholm, E., and Penttinen, R. P. Effect of the 3′-untranslated region on the expression levels and mRNA stability of alpha 1(I) collagen gene. Biochim. Biophys. Acta 1260(3), 294–300.Google Scholar
  27. 27.
    Fine, A., Matsui, R., Zhan, X., Poliks, C. F., Smith, B. D., and Goldstein, R. H. (1992) Discordant regulation of human type I collagen genes by prostaglandin E2. Biochim. Biophys. Acta 1135(1), 67–72.PubMedCrossRefGoogle Scholar
  28. 28.
    Rossert, J., Terraz, C., and Dupont, S. (2000) Regulation of type I collagen genes expression. Nephrol. Dial Transplant. 15(Suppl 6), 66–68.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2005

Authors and Affiliations

  • David C. Rishikof
    • 1
  • Ping-Ping Kuang
    • 1
  • Mangalalaxmy Subramanian
    • 1
  • Ronald H. Goldstein
    • 1
  1. 1.The Pulmonary CenterBoston University School of Medicine, The Boston VA Medical CenterBoston

Personalised recommendations