Assays for the Interferon-Induced Enzyme 2′,5′ Oligoadenylate Synthetases

  • Saumendra N. Sarkar
  • Mitali Pandey
  • Ganes C. Sen
Part of the Methods in Molecular Medicine™ book series (MIMM, volume 116)


Inhibition of protein synthesis by interferon treatment is mediated by two major pathways: the 2′–5′-linked oligoadenylates [2–5 (A)] synthetase-RNase L pathway and the double-stranded ribonucleic acid-dependent protein kinase-mediated pathway. 2–5 (A) synthetases are unique interferon-inducible enzymes that, upon activation by double-stranded RNA, polymerize adenosine triphosphate (ATP) to 2–5 (A) synthases. These 2–5 (A) synthetases bind and activate the latent RNase L, causing RNA degradation. In addition to the three major size classes of enzymatically active oligoadenylate synthetase proteins, at least one inactive oligoadenylate synthetase is known in human and mouse. Structure-function studies and recent crystal structure determination have identified several distinct sites in these proteins responsible for different biochemical functions. RNase L is the only known protein that binds to 2–5 (A) synthetases with very high affinity. Gene knockout studies of RNase L have identified its role in antiviral actions of interferon and in apoptosis. Recently, it has also been implicated in prostate cancer metastasis. In this chapter we describe several methodologies for studying biochemical and physiological properties of the 2–5 (A) synthetase-RNase L pathway.

Key Words

2′–5′ Oligoadenylate synthetase RNase L interferon virus 



Relevant research in the authors’ laboratory was supported by the grant CA-68782 from the National Institutes of Health.


  1. 1.
    Roberts, W. K., Hovanessian, A., Brown, R. E., Clemens, M. J., and Kerr, I. M. (1976) Interferon-mediated protein kinase and low-molecular-weight inhibitor of protein synthesis. Nature 264, 477–480.PubMedCrossRefGoogle Scholar
  2. 2.
    Hovanessian, A. G., Brown, R. E., and Kerr, I. M. (1977) Synthesis of low molecular weight inhibitor of protein synthesis with enzyme from interferon-treated cells. Nature 268, 537–540.PubMedCrossRefGoogle Scholar
  3. 3.
    Lengyel, P., Samanta, H., Pichon, J., Dougherty, J., Slattery, E., and Farrell, P. (1980) Double-stranded RNA and the enzymology of interferon action. Ann. N. Y. Acad. Sci. 350, 441–447.PubMedCrossRefGoogle Scholar
  4. 4.
    Sarkar, S. N., Bandyopadhyay, S., Ghosh, A., and Sen, G. C. (1999) Enzymatic characteristics of recombinant medium isozyme of 2′–5′ oligoadenylate synthetase. J. Biol. Chem. 274, 1848–1855.PubMedCrossRefGoogle Scholar
  5. 5.
    Sarkar, S. N., and Sen, G. C. (1998) Production, purification, and characterization of recombinant 2′, 5′-oligoadenylate synthetases. Methods 15, 233–242.PubMedCrossRefGoogle Scholar
  6. 6.
    Dong, B. and Silverman, R. H. (1995) 2–5A-dependent RNase molecules dimerize during activation by 2–5A. J. Biol. Chem. 270, 4133–4137.PubMedCrossRefGoogle Scholar
  7. 7.
    Kerr, I. M. (1987) The 2–5A system: a personal view. J. Interferon. Res. 7, 505–510.PubMedCrossRefGoogle Scholar
  8. 8.
    Lengyel, P. (1987) Double-stranded RNA and interferon action. J. Interferon. Res. 7, 511–519.PubMedCrossRefGoogle Scholar
  9. 9.
    Hovanessian, A. G. (1991) Interferon-induced and double-stranded RNA-activated enzymes: a specific protein kinase and 2′,5′-oligoadenylate synthetases. J. Interferon. Res. 11, 199–205.PubMedCrossRefGoogle Scholar
  10. 10.
    Rebouillat, D. and Hovanessian, A. G. (1999) The human 2′,5′-oligoadenylate synthetase family: interferon-induced proteins with unique enzymatic properties. J. Interferon Cytokine Res. 19, 295–308.PubMedCrossRefGoogle Scholar
  11. 11.
    Samuel, C. E. (2001) Antiviral actions of interferons. Clin. Microbiol. Rev. 14, 778–809.PubMedCrossRefGoogle Scholar
  12. 12.
    Sen, G. (2001) Viruses and Interferons. Annu. Rev. Microbiol. 55, 255–281.PubMedCrossRefGoogle Scholar
  13. 13.
    Justesen, J., Hartmann, R., and Kjeldgaard, N. O. (2000) Gene structure and function of the 2′–5′-oligoadenylate synthetase family. Cell Mol. Life Sci. 57, 1593–1612.PubMedCrossRefGoogle Scholar
  14. 14.
    Eskildsen, S., Hartmann, R., Kjeldgaard, N. O., and Justesen, J. (2002) Gene structure of the murine 2′–5′-oligoadenylate synthetase family. Cell Mol. Life Sci. 59, 1212–1222.PubMedCrossRefGoogle Scholar
  15. 15.
    Kumar, S., Mitnik, C., Valente, G., and Floyd-Smith, G. (2000) Expansion and molecular evolution of the interferon-induced 2′–5′ oligoadenylate synthetase gene family. Mol. Biol. Evol. 17, 738–750.PubMedGoogle Scholar
  16. 16.
    Hartmann, R., Olsen, H. S., Widder, S., Jorgensen, R., and Justesen, J. (1998) p59OASL, a 2′–5′ oligoadenylate synthetase like protein: a novel human gene related to the 2′–5′ oligoadenylate synthetase family. Nucleic Acids Res. 26, 4121–4128.PubMedCrossRefGoogle Scholar
  17. 17.
    Rebouillat, D., Marie, I., and Hovanessian, A. G. (1998) Molecular cloning and characterization of two related and interferon-induced 56-kDa and 30-kDa proteins highly similar to 2′–5′ oligoadenylate synthetase. Eur. J. Biochem. 257, 319–330.PubMedCrossRefGoogle Scholar
  18. 18.
    Marie, I., Galabru, J., Svab, J., and Hovanessian, A. G. (1989) Preparation and characterization of polyclonal antibodies specific for the 69 and 100 k-dalton forms of human 2–5A synthetase. Biochem. Biophys. Res. Commun. 160, 580–587.PubMedCrossRefGoogle Scholar
  19. 19.
    Rebouillat, D., Hovnanian, A., Marie, I., and Hovanessian, A. G. (1999) The 100-kDa 2′,5′-oligoadenylate synthetase catalyzing preferentially the synthesis of dimeric pppA2’p5’A molecules is composed of three homologous domains. J. Biol. Chem. 274, 1557–1565.PubMedCrossRefGoogle Scholar
  20. 20.
    Chebath, J., Benech, P., Revel, M., and Vigneron, M. (1987) Constitutive expression of (2′–5′) oligo A synthetase confers resistance to picornavirus infection. Nature 330, 587–588.PubMedCrossRefGoogle Scholar
  21. 21.
    Ghosh, A., Sarkar, S. N., and Sen, G. C. (2000) Cell growth regulatory and antiviral effects of the P69 isozyme of 2–5 (A) synthetase. Virology 266, 319–328.PubMedCrossRefGoogle Scholar
  22. 22.
    Mashimo, T., Lucas, M., Simon-Chazottes, D., Frenkiel, M. P., Montagutelli, X., Ceccaldi, P. E., et al. (2002) A nonsense mutation in the gene encoding 2′–5′-oligoadenylate synthetase/L1 isoform is associated with West Nile virus susceptibility in laboratory mice. Proc. Natl. Acad. Sci. USA 99, 11311–11316.PubMedCrossRefGoogle Scholar
  23. 23.
    Perelygin, A. A., Scherbik, S. V., Zhulin, I. B., Stockman, B. M., Li, Y., and Brinton, M. A. (2002) Positional cloning of the murine flavivirus resistance gene. Proc. Natl. Acad. Sci. USA 99, 9322–9327.PubMedCrossRefGoogle Scholar
  24. 24.
    Ghosh, A., Sarkar, S. N., Rowe, T. M., and Sen, G. C. (2001) A specific isozymes of 2′–5′ oligoadenylate synthetase is a dual function proapoptotic protein of the bcl-2 family. J. Biol. Chem. 276, 25447–25455.PubMedCrossRefGoogle Scholar
  25. 25.
    Hartmann, R., Rebouillat, D., Justesen, J., Sen, G. C., and Williams, B. R. (2001) The P59 Oligoadenylate Synthetase like Protein (P59OASL) does not display oligoadenylate synthetase activity but posses anti-viral properties conferred by an ubiquitin-like domain. J. Interferon Cytokine Res. 21, S–69.Google Scholar
  26. 26.
    Sarkar, S. N., Ghosh, A., Wang, H. W., Sung, S. S., and Sen, G. C. (1999) The nature of the catalytic domain of 2′–5′-oligoadenylate synthetases. J. Biol. Chem. 274, 25535–25542.PubMedCrossRefGoogle Scholar
  27. 27.
    Sarkar, S. N., Miyagi, M., Crabb, J. W., and Sen, G. C. (2002) Identification of the substrate-binding sites of 2′–5′-oligoadenylate synthetase. J. Biol. Chem. 277, 24321–24330.PubMedCrossRefGoogle Scholar
  28. 28.
    Sarkar, S. N., Pal, S., and Sen, G. C. (2002) Crisscross enzymatic reaction between the two molecules in the active dimeric P69 form of the 2′–5′ oligoadenylate synthetase. J. Biol. Chem. 277, 44760–44764.PubMedCrossRefGoogle Scholar
  29. 29.
    Hartmann, R., Justesen, J., Sarkar, S. N., Sen, G. C., and Yee, V. C. (2003) Crystal structure of the 2′-specific and double-stranded RNA-activated interferon-induced antiviral protein 2′–5−oligoadenylate synthetase. Mol. Cell 12, 1173–1185.PubMedCrossRefGoogle Scholar
  30. 30.
    O’Reilly, D. R., Miller, L. K. A., and Luckow, V. A. (1992) Baculovirus expression vectors: A Laboratory Manual, W. H. Freeman & Co., New YorkGoogle Scholar
  31. 31.
    Griffiths, C. M. and Page, M. J. (1997) Production of heterologous proteins using the baculovirus/insect expression system. Methods Mol. Biol. 75, 427–440.PubMedGoogle Scholar
  32. 32.
    Bandyopadhyay, S., Ghosh, A., Sarkar, S. N., and Sen, G. C. (1998) Production and Purification of Recombinant 2′–5′ oligoadenylate Synthetase and its Mutants using the Baculovirus System. Biochemistry 37, 3824–3830.PubMedCrossRefGoogle Scholar
  33. 33.
    Dougherty, J. P., Samanta, H., Farrell, P. J., and Lengyel, P. (1980) Interferon, double-stranded RNA, and RNA degradation. Isolation of homogeneous pppA(2’p5’A)n-1 synthetase from Ehrlich ascites tumor cells. J. Biol. Chem. 255, 3813–3816.PubMedGoogle Scholar
  34. 34.
    Justesen, J., Ferbus, D., and Thang, M. N. (1980) Elongation mechanism and substrate specificity of 2′,5′-oligoadenylate synthetase. Proc. Natl. Acad. Sci. USA 77, 4618–4622.PubMedCrossRefGoogle Scholar
  35. 35.
    Miele, M. B., Liu, D. K., and Kan, N. C. (1991) Fractionation and characterization of 2′,5′-oligoadenylates by polyacrylamide gel electrophoresis: an alternative method for assaying 2′,5′-oligoadenylate synthetase. J. Interferon. Res. 11, 33–40.PubMedCrossRefGoogle Scholar
  36. 36.
    Turpaev, K., Hartmann, R., Kisselev, L., and Justesen, J. (1997) Ap3A and Ap4A are primers for oligoadenylate synthesis catalyzed by interferon-inducible 2–5A synthetase. FEBS Lett. 408, 177–181.PubMedCrossRefGoogle Scholar
  37. 37.
    Hartmann, R., Norby, P. L., Martensen, P. M., Jorgensen, P., James, M. C., Jacobsen, C., et al. (1998) Activation of 2′–5′ oligoadenylate synthetase by singlestranded and double-stranded RNA aptamers. J. Biol. Chem. 273, 3236–3246.PubMedCrossRefGoogle Scholar
  38. 38.
    Justesen, J. and Kjeldgaard, N. O. (1992) Spectrophotometric pyrophosphate assay of 2′,5′-oligoadenylate synthetase. Anal. Biochem. 207, 90–93.PubMedCrossRefGoogle Scholar
  39. 39.
    Lalwani, R., Maiti, S., and Mukherji, S. (1995) Involvement of H1 and other chromatin proteins in the formation of DNA-protein cross-links induced by visible light in the presence of methylene blue. J. Photochem. Photobiol. B 27, 1177–122.CrossRefGoogle Scholar
  40. 40.
    Liu, Z. R., Wilkie, A. M., Clemens, M. J., and Smith, C. W. (1996) Detection of double-stranded RNA-protein interactions by methylene blue-mediated photocrosslinking. RNA 2, 611–621.PubMedGoogle Scholar
  41. 41.
    Gomos, J. B., Rowe, T. M., Sarkar, S. N., Kessler, S. P., and Sen, G. C. (2002) The proapoptotic 9-2 isozyme of 2–5 (A) synthetase cannot substitute for the sperm functions of the proapoptotic protein, Bax. J. Interferon Cytokine Res. 22, 199–206.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2005

Authors and Affiliations

  • Saumendra N. Sarkar
    • 1
  • Mitali Pandey
    • 1
  • Ganes C. Sen
    • 1
  1. 1.Department of Molecular BiologyThe Lerner Research Institute, Cleaveland Clinic FoundationCleveland

Personalised recommendations