Skip to main content

Genomic DNA Affinity Chromatography

A Technique to Isolate Interferon-Inducible DNA Binding Factors

  • Protocol
  • 600 Accesses

Part of the book series: Methods in Molecular Medicine™ ((MIMM,volume 116))

Abstract

Cytokines elicit responses in target cells by inducing changes in gene expression. For interferons (IFNs), this involves receptor-mediated activation of specific transcription factors, which then translocate into the nucleus to bind to cognate gene elements in the promoters of IFN-inducible genes. The prototypic IFN-inducible transcription factors are the signal transducer and activator of transcription (STAT) proteins. IFN-receptor interactions invoke Janus kinase activation via phosphorylation events, which in turn leads to the recruitment and phosphorylation of STAT proteins on tyrosine residues. Activated STATs then dimerize to form STAT complexes. IFNs-α/β will activate STAT-1, STAT-2, STAT-3 ,and STAT-5, whereas IFN-γ will predominantly activate STAT-1. In this chapter, we describe a procedure to identify IFN-inducible deoxyribonucleic acid (DNA) binding factors independently of any knowledge of their target DNA sequences. This procedure permits the identification of IFN-inducible STAT complexes as well as any other IFN-inducible DNA binding factors. This biochemical technique uses genomic DNA affinity chromatography to isolate DNA binding factors from IFN-inducible cytoplasmic or nuclear extracts.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Li, X., Leung, S., Burns, C., and Stark, G. R. (1998) Cooperative binding of Stat1-2 heterodimers and ISGF3 to tandem DNA elements. Biochimie 80, 703–710.

    Article  PubMed  CAS  Google Scholar 

  2. Kerr, L. D. (1995) Electrophoretic mobility shift assay. Methods Enzymol. 254, 619–632.

    Article  PubMed  CAS  Google Scholar 

  3. Laniel, M. A., Beliveau, A., and Guerin, S. L. (2001) Electrophoretic mobilityshift assays for the analysis of DNA-protein interactions. Methods Mol. Biol. 148, 13–30.

    PubMed  CAS  Google Scholar 

  4. Gubler, M. L., and Abarzua, P. (1995) Nonradioactive assay for sequence-specific DNA binding proteins. Biotechniques 18, 1008, 1011–1004.

    PubMed  CAS  Google Scholar 

  5. Jagelska, E., Brazda, V., Pospisilova, S., Vojtesek, B., and Palecek, E. (2002) New ELISA technique for analysis of p53 protein/DNA binding properties. J Immunol. Methods 267, 227–235.

    Article  PubMed  CAS  Google Scholar 

  6. Zhang, N., Xu, Y., Zhang, Z., and Xiong, W. (2003) A nonradioactive method for detecting DNA-binding activity of nuclear transcription factors. J. Huazhong. Univ. Sci. Technol. Med. Sci. 23, 227–229.

    Article  PubMed  CAS  Google Scholar 

  7. Solomon, M. J., and Varshavsky, A. (1985) Formaldehyde-mediated DNA-protein crosslinking: a probe for in vivo chromatin structures. Proc. Natl. Acad. Sci. USA 82, 6470–6474.

    Article  PubMed  CAS  Google Scholar 

  8. Weitzmann, M. N., and Savage, N. (1994) Cloning of an antibody binding DNA sequence: pitfalls of DNA/protein immunoprecipitation reactions. J. Immunol. Methods 173, 7–10.

    Article  PubMed  CAS  Google Scholar 

  9. Johnson, T. A., Wilson, H. L., and Roesler, W. J. (2001) Improvement of the chromatin immunoprecipitation (ChIP) assay by DNA fragment size fractionation. Biotechniques 31, 740, 742.

    PubMed  CAS  Google Scholar 

  10. Kang, S. H., Vieira, K., and Bungert, J. (2002) Combining chromatin immunoprecipitation and DNA footprinting: a novel method to analyze protein-DNA interactions in vivo. Nucleic Acids Res. 30, e44.

    Article  PubMed  Google Scholar 

  11. Phillips, T. M., and Smith, P. (2003) Analysis of intracellular regulatory proteins by immunoaffinity capillary electrophoresis coupled with laser-induced fluorescence detection. Biomed. Chromatogr. 17, 182–187.

    Article  PubMed  CAS  Google Scholar 

  12. Shannon, M. F., and Rao, S. (2002) Transcription. Of chips and ChIPs. Science 296, 666–669.

    Article  PubMed  CAS  Google Scholar 

  13. Haverty, P. M., Hansen, U., and Weng, Z. (2004) Computational inference of transcriptional regulatory networks from expression profiling and transcription factor binding site identification. Nucleic Acids Res. 32, 179–188.

    Article  PubMed  CAS  Google Scholar 

  14. Taverner, N. V., Smith, J. C., and Wardle, F. C. (2004) Identifying transcriptional targets. Genome Biol. 5, 210.

    Article  PubMed  Google Scholar 

  15. Buck, M. J., and Lieb, J. D. (2004) ChIP-chip: considerations for the design, analysis, and application of genome-wide chromatin immunoprecipitation experiments. Genomics 83, 349–360.

    Article  PubMed  CAS  Google Scholar 

  16. Ghislain, J. J., and Fish, E. N. (1996) Application of genomic DNA affinity chromatography identifies multiple interferon-alpha-regulated Stat2 complexes. J. Biol. Chem. 271, 12408–12413.

    Article  PubMed  CAS  Google Scholar 

  17. Ghislain, J. J., Wong, T., Nguyen, M., and Fish, E. N. (2001) The interferoninducible Stat2:Stat1 heterodimer preferentially binds in vitro to a consensus element found in the promoters of a subset of interferon-stimulated genes. J. Interferon Cytokine Res. 21, 379–388.

    Article  PubMed  CAS  Google Scholar 

  18. Grumbach, I. M., Mayer, I. A., Uddin, S., Lekmine, F., Majchrzak, B., Yamauchi, H., Fujita, S., Druker, B., Fish, E. N., and Platanias, L. C. (2001) Engagement of the CrkL adaptor in interferon alpha signalling in BCR-ABL-expressing cells. Br. J. Haematol. 112, 327–336.

    Article  PubMed  CAS  Google Scholar 

  19. Lekmine, F., Sassano, A., Uddin, S., Majchrzak, B., Miura, O., Druker, B. J., Fish, E. N., Imamoto, A., and Platanias, L. C. (2002) The CrkL adapter protein is required for type I interferon-dependent gene transcription and activation of the small G-protein Rap1. Biochem. Biophys. Res. Commun. 291, 744–750.

    Article  PubMed  CAS  Google Scholar 

  20. Uddin, S., Lekmine, F., Sassano, A., Rui, H., Fish, E. N., and Platanias, L. C. (2003) Role of Stat5 in type I interferon-signaling and transcriptional regulation. Biochem. Biophys. Res. Commun. 308, 325–330.

    Article  PubMed  CAS  Google Scholar 

  21. Levy, D. E., Kessler, D. S., Pine, R., and Darnell, J. E., Jr. (1989) Cytoplasmic activation of ISGF3, the positive regulator of interferon-alpha-stimulated transcription, reconstituted in vitro. Genes Dev. 3, 1362–1371.

    Article  PubMed  CAS  Google Scholar 

  22. Li, X., Leung, S., Qureshi, S., Darnell, J. E., Jr., and Stark, G. R. (1996) Formation of STAT1-STAT2 heterodimers and their role in the activation of IRF-1 gene transcription by interferon-alpha. J. Biol. Chem. 271, 5790–5794.

    Article  PubMed  CAS  Google Scholar 

  23. Li, X., Leung, S., Kerr, I. M., and Stark, G. R. (1997) Functional subdomains of STAT2 required for preassociation with the alpha interferon receptor and for signaling. Mol. Cell. Biol. 17, 2048–2056.

    PubMed  CAS  Google Scholar 

  24. Wagner, T. C., Velichko, S., Vogel, D., Rani, M. R., Leung, S., Ransohoff, R. M., Stark, G. R., Perez, H. D., and Croze, E. (2002) Interferon signaling is dependent on specific tyrosines located within the intracellular domain of IFNAR2c. Expression of IFNAR2c tyrosine mutants in U5A cells. J. Biol. Chem. 277, 1493–1499.

    Article  PubMed  CAS  Google Scholar 

  25. Bluyssen, H. A. and Levy, D. E. (1997) Stat2 is a transcriptional activator that requires sequence-specific contacts provided by stat1 and p48 for stable interaction with DNA. J. Biol. Chem. 272, 4699–4605.

    Article  Google Scholar 

  26. Add 30 µL of room temperature 5X SRB to the top of each membrane. Invert the membrane chambers into 1.5-mL Eppendorf tubes and centrifuge the tubes at ≥10,000g for 30 s at room temperature to collect the concentrated protein.

    Google Scholar 

Download references

Acknowledgments

The authors acknowledge Dr. Julien Ghislain, who developed, tested, and established the GDAC protocol in this laboratory. He is currently based at the Ecole Normale Supérieure, Département de Biologie, Paris, France. We would like to thank M. Brierley for contributing the GDAC experiment data shown in Fig. 2 . The authors also thank B. Majchrzak-Kita and R. Deonarain for providing technical advice and for critical reading of this manuscript.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc.

About this protocol

Cite this protocol

Kumaran, J., Fish, E.N. (2005). Genomic DNA Affinity Chromatography. In: Carr, D.J.J. (eds) Interferon Methods and Protocols. Methods in Molecular Medicine™, vol 116. Humana Press. https://doi.org/10.1385/1-59259-939-7:057

Download citation

  • DOI: https://doi.org/10.1385/1-59259-939-7:057

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-418-0

  • Online ISBN: 978-1-59259-939-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics