Skip to main content

Identification of Components of RNAi Pathways Using the Tandem Affinity Purification Method

  • Protocol
RNA Silencing

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 309))

Abstract

RNA interference (RNAi) is rapidly becoming a standard laboratory technique for understanding and regulating the function of specific genes in evolutionarily diverse organisms, including plants, Caenorhabditis elegans, Drosophila, and mammalian cells (110). RNAi is initiated by the conversion of doublestranded RNA (dsRNA) into 21- to 23-nucleotide (nt) fragments of dsRNA by Dicer enzymes. These short, interfering RNAs, or siRNAs as they are known, are incorporated into an RNAi effector complex, the RNA-induced silencing complex (RISC), which uses them as guides to target and destroy complementary messenger RNA (mRNA). Recent findings point to a tight connection between microRNA (miRNA) and RNAi molecular machineries. Recent study also has led to the unmasking of a widespread biological regulatory mechanism involving miRNAs (1117), and there is a wide agreement that the core RNAi machinery carries out numerous cellular functions by an endogenous pathway important for normal development in many organisms, including gene regulation, virus resistance, and chromatin remodeling (117). Although some components of the RNAi cellular machinery have been identified, the overall picture is far from clear. We describe the tandem affinity purification (TAP) method (1820) to isolate protein components of RISC in cultured Drosophila Schneider-2 (S2) cells. This purification method has allowed us to identify several RISC components, including Argonaute 2 (AGO2), the Drosophila homolog of fragile X mental retardation protein (dFMR1), and a DEAD-box RNA helicase Dmp68 (21,22). Identification of components of RNAi/miRNA pathways by the TAP method eliminates the need for large-scale sample preparation and overcomes, for example, the potential hazards associated with the use of a radioisotope, thereby placing the method within the scope of the average laboratory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fire, A., Xu, S., Montgomery, M. K., Kostas, S. A., Driver, S. E., and Mello, C. C. (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391, 806–811.

    Article  PubMed  CAS  Google Scholar 

  2. Novina, C. D. and Sharp, P. A. (2004) The RNAi revolution. Nature 430, 161–164.

    Article  PubMed  CAS  Google Scholar 

  3. Dykxhoorn, D. M., Novina, C. D., and Sharp, P. A. (2003) Killing the messenger: short RNAs that silence gene expression. Nat. Rev. Mol. Cell. Biol. 4, 457–467.

    Article  PubMed  CAS  Google Scholar 

  4. Pederson, T. (2004) RNA interference and mRNA silencing, 2004: how far will they reach? Mol. Biol. Cell 15, 407–410.

    Article  PubMed  CAS  Google Scholar 

  5. Denli, A. M. and Hannon, G. J. (2003) RNAi: an ever-growing puzzle. Trends Biochem. Sci. 28, 196–201.

    Article  PubMed  CAS  Google Scholar 

  6. Zamore, P. D. (2004) Plant RNAi: how a viral silencing suppressor inactivates siRNA. Curr. Biol. 14, R198–R200.

    Article  PubMed  CAS  Google Scholar 

  7. Hutvagner, G. and Zamore, P. D. (2002) RNAi: nature abhors a double-strand. Curr. Opin. Genet. Dev. 12, 225–232.

    Article  PubMed  CAS  Google Scholar 

  8. Matzke, A. M. and Matzke, A. J. M. (2004) Planting the seeds of a new paradigm. PLoS Biol. 2, 582–586.

    Article  CAS  Google Scholar 

  9. Matzke, M. and Matzke, A. J. M. (2003) RNAi extends its reach. Science 301, 1060–1061.

    Article  PubMed  CAS  Google Scholar 

  10. Siomi, H., Ishizuka, A. and Siomi, M. C. (2004) RNA interference: a new mechanism by which FMRP acts in the normal brain? What can Drosophila teach us? Ment. Retard. Dev. Disabil. Res. Rev. 10, 68–74.

    Article  PubMed  Google Scholar 

  11. He, L. and Hannon, G. J. (2004) MicroRNAs: small RNAs with a big role in gene regulation. Nat. Rev. Genet. 5, 522–531.

    Article  PubMed  CAS  Google Scholar 

  12. Bartel, D. P. and Chen, C. Z. (2004) Micromanagers of gene expression: the potentially widespread influence of metazoan microRNAs. Nat. Rev. Genet. 5, 396–400.

    Article  PubMed  CAS  Google Scholar 

  13. Bartel, D. P. (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116, 281–297.

    Article  PubMed  CAS  Google Scholar 

  14. Bartel, B. and Bartel, D. P. (2003) MicroRNAs: at the root of plant development? Plant Physiol. 132, 709–717.

    Article  PubMed  CAS  Google Scholar 

  15. Lai, E. C. (2003) microRNAs: runts of the genome assert themselves. Curr. Biol. 13, R925–R936.

    Article  PubMed  CAS  Google Scholar 

  16. Aravin, A. A., Lagos-Quintana, M., Yalcin, A., et al. (2003) The small RNA profile during Drosophila melanogaster development. Dev. Cell 5, 337–350.

    Article  PubMed  CAS  Google Scholar 

  17. Stark, A., Brennecke, J., Russell, R. B., and Cohen, S. M. (2003) Identification of Drosophila MicroRNA Targets. PLoS Biol. 1, E60.

    Article  PubMed  Google Scholar 

  18. Rigaut, G., Shevchenko, A., Rutz, B., Wilm, M., Mann, M., and Seraphin, B. (1999) A generic protein purification method for protein complex characterization and proteome exploration. Nat. Biotechnol. 17, 1030–1032.

    Article  PubMed  CAS  Google Scholar 

  19. Puig, O., Caspary, F., Rigaut, G., et al. (2001) The tandem affinity purification (TAP) method: a general procedure of protein complex purification. Methods 24, 218–229.

    Article  PubMed  CAS  Google Scholar 

  20. Forler, D., Kocher, T., Rode, M., Gentzel, M., Izaurralde, E., and Wilm, M. (2003) An efficient protein complex purification method for functional proteomics in higher eukaryotes. Nat. Biotechnol. 21, 89–92.

    Article  PubMed  CAS  Google Scholar 

  21. Ishizuka, A., Siomi, M. C., and Siomi, H. (2002) A Drosophila fragile X protein interacts with components of RNAi and ribosomal proteins. Genes Dev. 16, 2497–2508.

    Article  PubMed  CAS  Google Scholar 

  22. Okamura, K., Ishizuka, A., Siomi, H., and Siomi, M. C. (2004) Distinct roles for Argonaute proteins in small RNA-directed RNA cleavage pathways. Genes Dev. 18, 1655–1666.

    Article  PubMed  CAS  Google Scholar 

  23. Hammond, S. M., Boettcher, S., Caudy, A. A., Kobayashi, R., and Hannon, G. J. (2001) Argonaute2, a link between genetic and biochemical analysis of RNAi. Science 293, 1146–1150.

    Article  PubMed  CAS  Google Scholar 

  24. Lafont, F., Lecat, S., Verkade, P., and Simons, K. (1998) Annexin XIIIb associates with lipid microdomains to function in apical delivery. J. Cell. Biol. 142, 1413–1427.

    Article  PubMed  CAS  Google Scholar 

  25. Benting, J., Lecat, S., Zacchetti, D., and Simons, K. (2000) Protein expression in Drosophila Schneider cells. Anal. Biochem. 278, 59–68.

    Article  PubMed  CAS  Google Scholar 

  26. Towers, P. R. and Sattelle, D. B. (2002) A Drosophila melanogaster cell line (S2) facilitates post-genome functional analysis of receptors and ion channels. Bioessays 24, 1066–1073.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. B. Seraphin for providing the TAP plasmids. We also thank Dr. F. Lafont for the pRmHa plasmid. This work was supported by grants from the Ministry of Education, Culture, Sports, Science, and Technology of Japan (MEXT) and the Japan Society for the Promotion of Science (JSPS).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc.

About this protocol

Cite this protocol

Siomi, M.C., Siomi, H. (2005). Identification of Components of RNAi Pathways Using the Tandem Affinity Purification Method. In: Carmichael, G.G. (eds) RNA Silencing. Methods in Molecular Biology™, vol 309. Humana Press. https://doi.org/10.1385/1-59259-935-4:001

Download citation

  • DOI: https://doi.org/10.1385/1-59259-935-4:001

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-436-4

  • Online ISBN: 978-1-59259-935-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics