Advertisement

Receptor Databases and Computational Websites for Ligand Binding

  • Brinda K. Rana
  • Paul A. Insel
Protocol
Part of the Methods in Molecular Biology™ book series (MIMB, volume 306)

Abstract

Ligand binding to receptors is a key step in the regulation of cellular function by neurotransmitters, hormones, and many drugs. Accordingly, this initial event in ligand action is important for understanding disease and designing new drugs. A large body of experimental data describing receptor-ligand interactions exists and is derived from studies of native and transfected cell systems, including a growing number of studies with artificial or naturally occurring receptor mutants. Taken together, genes encoding various receptors appear to form the largest classes of functional genes in mammalian genomes. This large number of genes and gene products, together with the expanding pool of ligands, provides, and will generate in the future, a huge amount of data. Such compilations of data create a need for comprehensive, web-based resources that compile and integrate information on receptor protein and nucleotide sequences, classification, experimental results, and computational tools for modeling interactions. A number of websites in the public domain provide useful data-mining tools and contain information on specific families of receptors or receptor subfamilies, such as the G protein-coupled receptors (GPCRs) (1, 2), nuclear receptors, ion channel receptors, and others. A number of websites provide tools by which potential functions and molecular interactions can be derived to guide experimentalists in studies of receptor-ligand interaction and thus aid in defining the function of the receptor of interest. The goal of this chapter is to identify websites containing information that can facilitate both computational and experimental studies of receptor-ligand interactions. We will identify and briefly review websites and certain software that are available for several different classes of receptors and their ligands.

Keywords

Androgen Receptor Nuclear Receptor Familial Hypercholesterolemia Familial Hypercholesterolemia GABAC Receptor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Rana, B. K. and Insel, P. A. (2001) Useful G-protein-coupled receptor websites. Trends Pharm. Sci. 22, 485–486.PubMedCrossRefGoogle Scholar
  2. 2.
    Rana, B. K. and Insel, P. A. (2002) G-protein-coupled receptor websites. Trends Pharm. Sci. 23, 535–536.PubMedCrossRefGoogle Scholar
  3. 3.
    Berman, H. M., Westbrook, J., Feng, Z., et al. (2000) The Protein Data Bank. Nucleic Acids Res. 28, 235–242.PubMedCrossRefGoogle Scholar
  4. 4.
    Brooijmans, N. and Kuntz, I. D. (2003) Molecular recognition and docking algorithms. Ann. Rev. Biophys. Biomol. Struct. 32, 335–373.CrossRefGoogle Scholar
  5. 5.
    Ewing, T. J. A, and Kuntz, I. D. (1997) Critical evaluation of search algorithms used in automated molecular docking. J. Comput. Chem. 18, 1175–1189.CrossRefGoogle Scholar
  6. 6.
    Hendlich M., Bergner A., Gunther J., and Klebe G. (2003) Relibase: design and development of a database for comprehensive analysis of protein-ligand interactions. J. Mol. Biol. 326, 607–620.PubMedCrossRefGoogle Scholar
  7. 7.
    Roche, O., Kiyama, R., and Books, C. L. (2001) Ligand-protein database: linking protein-ligand complex structures to binding data. J. Med. Chem. 44, 3592–3598.PubMedCrossRefGoogle Scholar
  8. 8.
    Ewing, T. J., Makino, S., Skillman, A. G., and Kuntz, I. D. (2001) DOCK 4.0: search strategies for automated molecular docking of flexible molecule databases. J. Comput. Aid. Mol. Des. 15, 411–428.CrossRefGoogle Scholar
  9. 9.
    Morris, G. M., Goodsell, D. S., Halliday, R. S., et al. (1998) Automated docking using a lamarckian genetic algorithm and empirical binding free energy function. J. Comput. Chem. 19, 1639–1662.CrossRefGoogle Scholar
  10. 10.
    Chen, X., Ji, Z. L., Zhi, D. G., and Chen, Y. Z. (2002) CLiBE: a database of computed ligand binding energy for ligand-receptor complexes and its potential use in the analysis of drug binding competitiveness. J. Comput. Chem. 26, 661–666.CrossRefGoogle Scholar
  11. 11.
    Chen, Y. Z., Gu, X. L., and Cao, Z. W. (2001) Can an optimization/scoring procedure in ligand-protein docking be employed to probe drug-resistant mutations in proteins? J. Mol. Graph. Model. 19, 560–570.PubMedCrossRefGoogle Scholar
  12. 12.
    Chen, Y. Z. and Ung, C. Y. (2001) Prediction of potential toxicity and side effect protein targets of a small molecule by a ligand-protein inverse docking approach. J. Mol. Graph Model. 20, 199–218.PubMedCrossRefGoogle Scholar
  13. 13.
    Stuart, A. C., Ilyin, V. A., and Sali, A. (2002) LigBase: a database of families of aligned ligand binding sites in known protein sequences and structures. Bioinformatics 18, 200–201.PubMedCrossRefGoogle Scholar
  14. 14.
    Wallace, A. C., Laskowski, R. A., and Thornton, J. M. (1995). LIGPLOT: a program to generate schematic diagrams of protein-ligand interactions. Prot. Eng. 8, 127–134.CrossRefGoogle Scholar
  15. 15.
    Lichtarge, O., Bourne, H. R., and Cohen, F. E. (1996). An evolutionary trace method defines binding surfaces common to protein families. J. Mol. Biol. 257, 342–358.PubMedCrossRefGoogle Scholar
  16. 16.
    Horn, F., Bettler, E., Oliveira, L., Campagne, F., Cohen, F. E., and Vriend, G. (2003) GPCRDB information system for G protein-coupled receptors. Nucl. Acids Res. 31, 294–297.PubMedCrossRefGoogle Scholar
  17. 17.
    Beukers, M. W., Kristiansen, K., Ijzerman, A. P., and Edvardsen, O. (1999) TinyGRAP database: a bioinformatics tool to mine G protein-coupled receptor mutant data. Trends Pharm. Sci. 20, 475–477.PubMedCrossRefGoogle Scholar
  18. 18.
    Takeda, S., Kadowaki, S., Haga, T., Takaesu, H., and Mitaku, S. (2002) Identification of G protein-coupled receptor genes from the human genome sequence. FEBSLett. 520, 97–101.CrossRefGoogle Scholar
  19. 19.
    Fredriksson, R., Lagerstrom, M. C., Lundin, L.G., and Schioth, H. B.(2003) The G-protein-coupled receptors in the human genome form five main families. Phylogenetic analysis, paralogon groups, and fingerprints. Mol. Pharmacol. 63, 1256–1272.PubMedCrossRefGoogle Scholar
  20. 20.
    Möller, S., Vilo, J., and Croning, M. D. R. (2001) Prediction of the coupling specificity of G protein coupled receptors to their G proteins. Bioinformatics 17, S174–S181.PubMedCrossRefGoogle Scholar
  21. 21.
    Qian, B., Soyer, O. S., Neubig, R. R., and Goldstein, R. A. (2003) Depicting a protein’s two faces: GPCR classification by phylogenetic tree-based HMMs. FEBSLett. 554, 95–99.CrossRefGoogle Scholar
  22. 22.
    Crasto, C., Marenco, L., Miller, P. L., and Shepherd, G. S. (2002) Olfactory Receptor Database: a metadata-driven automated population from sources of gene and protein sequences. Nucl Acids Res. 354–360Google Scholar
  23. 23.
    Martinez, E., Moore, D.D., Keller, E., Pearce, D., Vanden Heuvel, J.P., Robinson, V., Bottlieb, B., MacDonald, P., Simons, S.Jr., Sanchez, E., Danielsen, M. (1998) The Nuclear Receptor Resource: a growing family. Nucl. Acids Res. 26, 239–241.PubMedCrossRefGoogle Scholar
  24. 24.
    Horn, F., G. Vriend and F. E. Cohen (2001) Collecting and Harvesting Biological Data: The GPCRDB & NucleaRDB Databases. Nucl Acids Res. 29, 346–349.PubMedCrossRefGoogle Scholar
  25. 25.
    Bettler, E., Krause, R., Horn, F., Vriend, G. (2003) NRSAS: Nuclear Receptor Structure Analysis Servers. Nucl. Acids Res. 31, 3400–3403.PubMedCrossRefGoogle Scholar
  26. 26.
    VanDurme, J.J., Bettler, E., Folkertsma, S., Horn, F., Vriend, G. NRMD: Nuclear Receptor Mutation Database. Nucl. Acids Res. 31, 331–333Google Scholar
  27. 27.
    Nakata, K., Takai-Igarashi, T., Nakano, T., Kaminuma, T. (2002) An integrated receptor database (IRDB). Data Science Journ. 1, 140–145.Google Scholar
  28. 28.
    Ben-Shlomo, I., Yu Hsu, S., Rauch, R., Kowalski, H. W., and Hsueh, A. J. (2003) Signaling receptome: a genomic and evolutionary perspective of plasma membrane receptors involved in signal transduction. Sci STKE. 2003(187). RE9.PubMedCrossRefGoogle Scholar
  29. 29.
    Le Novere, N. and Changeux, J.-P. (1999) The ligand gated ion channel database. Nucl. Acids Res. 27, 340–342.PubMedCrossRefGoogle Scholar
  30. 30.
    Varret, M., Rabes, J. P., Thiart, R., et al. (1998) LDLR Database (second edition): new additions to the database and the software, and results of the first molecular analysis. Nucl. Acid Res. 26, 248–252.CrossRefGoogle Scholar
  31. 31.
    Villeger, L., Abifadel, M., Allard, D.,et al. (2002) The UMD-LDLR database: additions to the software and 490 new entries to the database. Hum. Mutat. 20, 81–87.PubMedCrossRefGoogle Scholar
  32. 32.
    Roth, B. L., Kroeze, W. K., Patel, S., and Lopez, E. (2000) The multiplicity of serotonin receptors: uselessly diverse molecules or an embarrassment of riches? The Neuroscientist 6, 252–262.CrossRefGoogle Scholar
  33. 33.
    Graeber, T. G. and Eisenberg, D. (2001) Bioinformatic identification of potential autocrine signaling loops in cancer using gene expression profiles. Nat. Genet. 29, 295–300.PubMedCrossRefGoogle Scholar
  34. 34.
    Xenarios, I., Salwinski, L., Duan, X. J., Higney, P., Kim, S., and Eisenberg, D. (2002) DIP: The Database of Interacting Proteins. A research tool for studying cellular networks of protein interactions. Nucleic Acid Res. 30, 303–305.PubMedCrossRefGoogle Scholar
  35. 35.
    Dahlquist, K. D., Salomonis, N., Vranizan, K., Lawlor, S. C., and Conklin, B. R. (2002) GenMAPP, a new tool for viewing and analyzing microarray data on biological pathways. Nat. Genet. 31, 19–20.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2005

Authors and Affiliations

  • Brinda K. Rana
    • 1
  • Paul A. Insel
    • 2
  1. 1.Department of PsychiatryUniversity of California San DiegoLa Jolla
  2. 2.Department of PharmacologyUniversity of California San DiegoLa Jolla

Personalised recommendations