Skip to main content

Biopharmaceutical Proteins

Opportunities and Challenges

  • Protocol
Therapeutic Proteins

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 308))

Abstract

Over the last 20 yr, there has been extraordinary growth in the biopharmaceutical industry based on the development of recombinant DNA and hybridoma technologies in the 1970s. Prior to this, the dependence on extraction from natural sources severely limited the range and quantity of proteins available for clinical use. Recombinant DNA technology made it possible to mass produce a wide range of natural and modified proteins for the first time. In addition, hybridoma technology introduced a new class of protein reagents—the monoclonal antibodies (MAbs)—that provided an alternative approach to treat many diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Walsh, G. (2000) Biopharmaceutical benchmarks. Nature Biotechnol. 18, 831–832.

    Article  CAS  Google Scholar 

  2. Walsh, G. (2003) Biopharmaceutical benchmarks—2003. Nature Biotechnol. 21, 865–870.

    Article  CAS  Google Scholar 

  3. Andersson, R. and Mynahan, R. The protein production challenge. In Vivo, May 2001, 1–5.

    Google Scholar 

  4. Polastro, E. and Tulcinski, S. Boom time for biopharma. Scrip, September 2002, 45–49.

    Google Scholar 

  5. Gura, T. (2002) Magic bullets hit the target. Nature 417, 584–586.

    Article  PubMed  CAS  Google Scholar 

  6. Datamonitor Report. (2002) Therapeutic Proteins.

    Google Scholar 

  7. UBS Report. (2003) The State of Biomanufacturing.

    Google Scholar 

  8. Kresse, G.-B. (2004) Custom made genetically engineered drugs. BIOforum Europe 1, 38–40.

    Google Scholar 

  9. Stemmer, W. P. (1994) Rapid evolution of a protein in vitro by DNA shuffling. Nature 370, 389–391.

    Article  PubMed  CAS  Google Scholar 

  10. Chang, C.-C. J., Chen, T. T., Cox, B. W., Dawes, G. N., Stemmer, P. C., Punnonen, J., and Patten, P. A. (1999) Evolution of a cytokine using DNA family shuffling. Nat. Biotechnol. 17, 793–797.

    Article  PubMed  CAS  Google Scholar 

  11. Griffiths, D. and Duncan, A. R. (1998) Strategies for selection of antibodies by phage display. Curr. Opin. Biotechnol. 9, 102–108.

    Article  PubMed  CAS  Google Scholar 

  12. Vaughan, T. J., Osbourn, J. K., and Tempest, P. R. (1998) Human antibodies by design. Nat. Biotechnol. 16, 535–539.

    Article  PubMed  CAS  Google Scholar 

  13. Khosrovi, B. The production, characterization and testing of a modified recombinant human interferon beta, in Interferon: Research, Clinical Application and Regulatory Consideration (Zoon, K. C., Noguchi, P. D., and Liu, T.-Y., eds.) Elsevier, New York, 1984, pp. 89–99.

    Google Scholar 

  14. Elliott, S, Lorenzini, T., Asher, S., Aoki, K., Brankow, D., Buck, L., et al. (2003) Enhancement of therapeutic protein in vivo activities through glycoengineering. Nat. Biotechnol. 21, 414–420.

    Article  PubMed  CAS  Google Scholar 

  15. Morrow, K. J. (2002) Glycosylation in scale-up of antibody production. Genetic Engineering News 22,no. 12, p. 1.

    Google Scholar 

  16. Walsh, G. Biopharmaceuticals, Biochemistry and Biotechnology, 2nd ed. Wiley, New York, 2003.

    Google Scholar 

  17. Jefferis, R. Glycosylation of human IgG antibodies, relevance to therapeutic applications. BioPharm, September 2001, pp. 19–27.

    Google Scholar 

  18. Simmons, L. C., Reilly, D., Klimowski, L., Raju, T. S., Meng, G., Sims, P., et al. (2002) Expression of full-length immunoglobulins in Escherichia coli: rapid and efficient production of aglycosylated antibodies. J. Immunol. Methods 263, 133–147.

    Article  PubMed  CAS  Google Scholar 

  19. Shinkawa, T., Nakamura, K., Yamane, N., Shoji-Hosaka, E., Kanda, Y., Sakurada, M., et al. (2003) The absence of fucose but not the presence of galactose or bisecting N-Acetylgucosamine of human IgG1 complex-type oligosaccharides shows the critical role of enhancing antibody-dependent cellular cytotoxicity. J. Biol. Chem. 278, 3466–3473.

    Article  PubMed  CAS  Google Scholar 

  20. Shields, R. L., Lai, J., Keck, R., O’Connell, L. Y., Hong, K., Meng, Y. G., et al. (2002) Lack of fucose on human IgG1 N-linked oligosaccharide improves binding to human FcgammaRIII and antibody-dependent cellular toxicity. J. Biol. Chem. 277, 26733–26740.

    Article  PubMed  CAS  Google Scholar 

  21. Umana, P., Jean-Mairet, J., Moudry, R., Amstutz, H., and Bailey, J. E. (1999) Engineered glycoforms of an antineuroblastoma IgG1 with optimized antibody-dependent cellular cytotoxic activity. Nature Biotechnol. 17, 176–180.

    Article  CAS  Google Scholar 

  22. Potera, C. (2003) Pegylation for improving polypeptide drugs. Genetic Engineering News 23,no. 6, p. 58.

    Google Scholar 

  23. Chapman, A. P., Antoniw, P., Spitali, M., West, S., Stephens, S., and King, D. J. (1999) Therapeutic antibody fragments with prolonged in vivo half-lives. Nature Biotechnol. 17, 780–783.

    Article  CAS  Google Scholar 

  24. Humphreys, D. P. (2003) Production of antibodies and antibody fragments in Escherichia coli and a comparison of their functions, uses and modification. Curr. Opin. Drug Discov. Devel. 6, 188–196.

    PubMed  CAS  Google Scholar 

  25. Chu, L. and Robinson, D. K. (2001) Industrial choices for protein production by largescale cell culture. Curr. Opin. Biotechnol. 12, 180–187.

    Article  PubMed  CAS  Google Scholar 

  26. Birch, J. R. Cell products-antibodies, in Encyclopedia of Cell Technology (Spier, R., ed.) Wiley, New York, 2000, pp. 411–424.

    Google Scholar 

  27. Morrow, K. J. (2003) Cell lines for recombinant protein production. Genetic Engineering News 23, p. 50.

    Google Scholar 

  28. Jones, D. H., van Berkel, P. H. C., Logtenberg, T., and Bout, A. (2002) PER.C6 Cell Line for Human Antibody Production. Genetic Engineering News 22,no. 10, p. 50.

    Google Scholar 

  29. Singh, V. (1999) Disposable bioreactor for cell culture using wave-induced agitation Cytotechnology 30, 149–158.

    Article  PubMed  CAS  Google Scholar 

  30. Birch, J. R. Suspension culture, animal cells, in Encyclopedia of Bioprocess Technology: Fermentation, Biocatalysis and Bioseparation (Flickinger, M. C. and Drew, S. W., eds.) Wiley, New York, 1999, pp. 2509–2516.

    Google Scholar 

  31. J. P. Morgan Report (2002) The State of Biologics Manufacturing: Part 2, New York.

    Google Scholar 

  32. Fox, S. (2002) Biopharmaceutical contract manufacturing. Genetic Engineering News 22,no. 17, p. 1.

    Google Scholar 

  33. Andersen, D. C. and Krummen, L. (2002) Recombinant protein expression for therapeutic applications. Curr. Opin. Biotechnol. 13, 117–123.

    Article  PubMed  CAS  Google Scholar 

  34. Reff, M. E. (1993) High level production of recombinant immunoglobulins in mammalian cells. Curr. Opin. Biotechnol. 4, 573–576.

    Article  PubMed  CAS  Google Scholar 

  35. Birch, J. R., Boraston, R. C., Metcalfe, H., Brown, M. E., Bebbington, C. R., and Field, R. P. (1994) Selecting and designing cell lines for improved physiological characteristics. Cytotechnology 15, 11–16.

    Article  PubMed  CAS  Google Scholar 

  36. Irani, N., Wirth, M., van den Heuvel, J., and Wagner, R. (1999) Improvement of the primary metabolism of cell cultures by introducing a new cytoplasmic pyruvate carboxylase reaction. Biotechnol. Bioeng. 66, 239–246.

    Article  Google Scholar 

  37. Chen, K., Liu, Q., Xie, L., Sharp, P. A., and Wang, D. I. C. (2001) Engineering of a mammalian cell line for reduction of lactate formation and high monoclonal antibody production. Biotechnol. Bioeng. 72, 55–61.

    Article  PubMed  CAS  Google Scholar 

  38. Dickson, A. J. (1998) Apoptosis regulation and its application to biotechnology. Tibtech 16, 339–342.

    CAS  Google Scholar 

  39. Arden, N. and Betenbaugh, M. J. (2004) Life and death in mammalian cell culture: strategies for apoptosis inhibition. Trends Biotechnol. 22, 174–180.

    Article  PubMed  CAS  Google Scholar 

  40. Dutton, G. (2003) Reducing apoptosis: bioprocess bane or boon. Genetic Engineering News 23,no. 4, p. 32.

    Google Scholar 

  41. Rasmussen, B., Davis, R., Thomas, J., and Reddy, P. (1998) Isolation, characterization and recombinant protein expression in Veggie—CHO: A serum-free host cell line. Cytotechnology 28, 31–42.

    Article  PubMed  CAS  Google Scholar 

  42. Wayte, J., Boraston, R., Bland, H., Varley, J., and Brown, M. (1997) pH: Effects on growth and productivity of cell lines producing monoclonal antibodies: control in large-scale fermenters. The Genetic Engineer and Biotechnologist 17, 125–132.

    CAS  Google Scholar 

  43. Bebbington, C. R., Renner, G., Thomson, S., King, D., Abrams, D., and Yarranton, G. T. (1992) High level expression of a recombinant antibody from myeloma cells using a glutamine synthetase gene as an amplifiable selectable marker. Biotechnology 10, 169–175.

    Article  PubMed  CAS  Google Scholar 

  44. Lubiniecki, A. (1998) Historical reflections on cell culture engineering. Cytotechnology 28, 139–145.

    Article  PubMed  CAS  Google Scholar 

  45. Houdebine, L.-M. (2002) Antibody manufacture in transgenic animals and comparisons with other systems. Curr. Opin. Biotechnol. 13, 625–629.

    Article  PubMed  CAS  Google Scholar 

  46. Ma, J. K., Drake, P. M. W., and Christou, P. (2003) The production of recombinant pharmaceutical proteins in plants. Nat. Rev. Genet. 4, 794–805.

    Article  PubMed  CAS  Google Scholar 

  47. Moskowitz, D. B. Down on the pharm. Scrip, March 2003, pp. 36–37.

    Google Scholar 

  48. Mison, D. and Curling, J. (2000) The industrial production costs of recombinant therapeutic proteins expressed in transgenic corn. BioPharm, May 2000, pp. 48–54.

    Google Scholar 

  49. Chadd, H. E. and Chamow, S. M. (2001) Therapeutic antibody expression technology. Curr. Opin. Biotechnol. 12, 188–194.

    Article  PubMed  CAS  Google Scholar 

  50. Holt, L. J., Herring, C., Jespers, L. S., Woolven, B. P., and Tomlinson, I. M. (2003) Domain antibodies: proteins for therapy. Trends Biotechnol. 21, 484–490.

    Article  PubMed  CAS  Google Scholar 

  51. Gurkan, C., Symeonides, S. N., and Ellar, D. J. (2004) High level production in Pichia pastoris of an anti-p185 HER-2 single chain antibody fragment using an alternative secretion expression vector. Biotechnol. Appl. Biochem. 39, 115–122.

    Article  PubMed  CAS  Google Scholar 

  52. Ward, M. (2002) Expression of antibodies in Aspergillus niger. Genetic Engineering News 22,no. 21, p. 48.

    Google Scholar 

  53. Choi, B.-K., Bobrowicz, P., Davidson, R. C., Hamilton, S. R., Kung, D. H., Li, H., et al. (2003) Use of combinatorial genetic libraries to humanize N-linked glycosylation in the yeast Pichia pastoris. Proc. Natl. Acad. Sci. USA 100, 5022–5027.

    Article  PubMed  CAS  Google Scholar 

  54. Wacker, M., Linton, D., Hitchen, P. G., Nita-Lazar, M., Haslam, S. M., North, S. J., et al. (2002) N-linked glycosylation in Campylobacter jejuni and its functional transfer into E. coli. Science 298, 1790–1793.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc.

About this protocol

Cite this protocol

Birch, J.R., Onakunle, Y. (2005). Biopharmaceutical Proteins. In: Smales, C.M., James, D.C. (eds) Therapeutic Proteins. Methods in Molecular Biology™, vol 308. Humana Press. https://doi.org/10.1385/1-59259-922-2:001

Download citation

  • DOI: https://doi.org/10.1385/1-59259-922-2:001

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-390-9

  • Online ISBN: 978-1-59259-922-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics