Skip to main content

Circular Dichroism Spectroscopy for the Study of Protein-Ligand Interactions

  • Protocol
Protein-Ligand Interactions

Part of the book series: Methods in Molecular Biology ((MIMB,volume 305))

Abstract

Circular dichroism (CD) is the difference in absorption of left and right circularly polarized light, usually by a solution containing the molecules of interest. A signal is only measured for chiral molecules such as proteins. A CD spectrum provides information about the bonds and structures responsible for this chirality. When a small molecule (or ligand) binds to a protein, it acquires an induced CD (ICD) spectrum through chiral perturbation to its structure or electron rearrangements. The wavelengths of this ICD are determined by the ligand’s own absorption spectrum, and the intensity of the ICD spectrum is determined by the strength and geometry of its interaction with the protein. Thus, ICD can be used to probe the binding of ligands to proteins. This chapter outlines protein CD and ICD, together with some of the issues relating to experimental design and implementation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nakanishi K., Berova N., and Woody R. W. (ed.) (1994) Circular Dichroism: Principles and Applications. VCH, New York.

    Google Scholar 

  2. Rodger A. and Nordén B (1997) Circular and Linear Dichroism. Oxford University Press, Oxford.

    Google Scholar 

  3. Johnson W. C. Fitting programs are available to deconvolute the experimental data into percentages of the structural motifs. Website: e.g., http://www.cryst. bbk.ac.uk/cdweb/html/home.html; Dicroweb: a facility of the BBSRC Centre for Protein and Membrane Structure and Dynamics. http://oregonstate.edu/dept/ biochem/faculty/johnson.html. Date accessed: November 20, 2004.

    Google Scholar 

  4. Johnson W. C. (1999) Analyzing protein circular dichroism spectra for accurate secondary structures. Proteins: Structure, Function and Genetics 7, 307–312.

    Article  Google Scholar 

  5. Chen G. C. and Yang J. T. (1977) Two-point calibration of circular dichrometer with D-10-camphorsulfonic acid. Anal. Lett. 10, 1195–1207.

    Article  CAS  Google Scholar 

  6. Takakuwa T., Konno T., and Meguro H. (1985) A new standard substance for calibration of circular dichroism: ammonium D-10-camphorsulfonate. Anal. Sci. 1, 215–218.

    Article  CAS  Google Scholar 

  7. Dafforn T. R., Halsall D. J., Serpell L. C., Rajendra J., and Rodger A. (2004) The use of linear dichroism to determine the orientation of secondary structural elements within protein fibres. Biophys. J. 86, 404–410.

    Article  CAS  Google Scholar 

  8. Pace C. N. (1986) Determination and analysis of urea and guanidine hydrochloride denaturation curves Methods Enzymol. 131, 266–280.

    Article  CAS  Google Scholar 

  9. Gill S. C. and von Hippel P. H. (1989) Calculation of protein extinction coefficients from amino acid sequence data. Anal. Biochem. 182, 319–326.

    Article  CAS  Google Scholar 

  10. Miles A. J., Wien F., Lees J. G., Rodger A., Janes R. W., and Wallace B. A. (2003) Calibration and standardisation of synchrotron radiation circular dichroism and conventional circular dichroism spectrophotometers. Spectroscopy 17, 653–661.

    Article  CAS  Google Scholar 

  11. Scatchard G. (1949) The attraction of proteins for small molecules and ions. Ann. N.Y. Acad. Sci. 51, 660–672.

    Article  CAS  Google Scholar 

  12. Rodger A. (1993) Linear dichroism. Methods Enzymol. 226, 232–258.

    Article  CAS  Google Scholar 

  13. Polster J. and Lachman H. (1989) Spectrometric Titrations: Analysis of Chemical Equilibria. VCH Verlagsgesellschaft, Weinheim, Germany.

    Google Scholar 

  14. Johnson W. C., Jr. (1988) Secondary structure of proteins through circular dichroism spectroscopy. Ann. Rev. Biophys. Biophys. Chem. 17, 145–166.

    Article  CAS  Google Scholar 

  15. Johnson W. C., Jr. (1985) Circular dichroism and its empirical application to biopolymers. Methods Biochem. Anal. 31, 61–163.

    CAS  Google Scholar 

  16. Miguel M. S., Marrington R., Rodger P. M., Rodger A., and Robinson C. (2003) An Escherichia coli twin-arginine signal peptide switches between helical and unstructured conformations depending on hydrophobicity of the environment. Euro. J. Biochem. 270, 1–8.

    Google Scholar 

  17. Green P. (1999) PhD Thesis, University of Warwick, UK.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Rodger, A., Marrington, R., Roper, D., Windsor, S. (2005). Circular Dichroism Spectroscopy for the Study of Protein-Ligand Interactions. In: Ulrich Nienhaus, G. (eds) Protein-Ligand Interactions. Methods in Molecular Biology, vol 305. Humana, Totowa, NJ. https://doi.org/10.1385/1-59259-912-5:343

Download citation

  • DOI: https://doi.org/10.1385/1-59259-912-5:343

  • Publisher Name: Humana, Totowa, NJ

  • Print ISBN: 978-1-58829-372-5

  • Online ISBN: 978-1-59259-912-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics