Skip to main content

Ultrafast Time-Resolved IR Studies of Protein-Ligand Interactions

  • Protocol
Protein-Ligand Interactions

Part of the book series: Methods in Molecular Biology ((MIMB,volume 305))

Abstract

Time-resolved mid-IR spectroscopy combines molecular sensitivity with ultrafast capability to incisively probe protein-ligand interactions in model heme proteins. Highly conserved residues near the heme binding site fashion a ligand-docking site that mediates the transport of ligands to and from the binding site. We employ polarization anisotropy measurements to probe the orientation and orientational distribution of CO when bound to and docked near the active binding site, as well as the dynamics of ligand trapping in the primary docking site. In addition, we use more conventional transient absorption methods to probe the dynamics of ligand escape from this site, as well as the ultrafast dynamics of NO geminate recombination with the active binding site. The systems investigated include myoglobin, hemoglobin, and microperoxidase.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ansari A., Berendzen J., Bowne S. F., Frauenfelder H., Iben I. E. T., Sauke T. B., Shyamsunder E., and Young R. D. (1985) Protein states and proteinquakes. Proc. Natl. Acad. Sci. USA 82, 5000–5004.

    Article  CAS  Google Scholar 

  2. Moller J. K. S. and Skibsted L. H. (2002) Nitric Oxide and Myoglobins. Chem. Rev. 102, 1167–1178.

    Article  CAS  Google Scholar 

  3. Maxwell J. C. and Caughey W. S. (1978) Infrared spectroscopy of ligands, gases, and other groups in aqueous solutions and tissues. Methods Enzymol. 54, 302–323.

    Article  CAS  Google Scholar 

  4. Kim S., Jin G., and Lim M. (2003) Structural dynamics of myoglobin probed by femtosecond infrared spectroscopy of the amide band. Bull. Kor. Chem. Soc. 24, 1470–1474.

    Article  CAS  Google Scholar 

  5. Lim M., Wolford M. F., Hamm P., and Hochstrasser R. M. (1998) Chirped wavepacket dynamics of HgBr from the photolysis of HgBr2 in solution. Chem. Phys. Lett. 290, 355–362.

    Article  CAS  Google Scholar 

  6. Hamm P., Lim L., and Hochstrasser R. M. (1998) The Structure of the Amide I Band of Peptides Measured by Femtosecond Nonlinear IR Spectroscopy. J. Phys. Chem. B. 102, 6123–6138.

    Article  CAS  Google Scholar 

  7. Hamm P., Kaindl R. A., and Stenger J. (2000) Noise suppression in femtosecond mid-infrared light sources. Opt. Lett. 25, 1798–1800.

    Article  CAS  Google Scholar 

  8. Kaindl R. A., Wurm M., Reimann K., Hamm P., Weiner A. M., and Woerner M. (2000) Generation, shaping, and characterization of intense femtosecond pulses tunable from 3 to 20 µm. J. Opt. Soc. Am. B. 17, 2086–2094.

    Article  CAS  Google Scholar 

  9. Moore J. N., Hansen P. A., and Hochstrasser R. M. (1988) Iron-carbonyl bond geometries of carboxymyoglobin and carboxyhemoglobin in solution determined by picosecond time-resolved infrared spectroscopy. Proc. Natl. Acad. Sci. USA 85, 5062–5066.

    Article  CAS  Google Scholar 

  10. Ansari A. and Szabo A. (1993) Theory of photoselection by intense light pulses. Biophys. J. 64, 838–851.

    Article  CAS  Google Scholar 

  11. Eaton W. A. and Hofrichter J. (1981) Polarized absorption and linear dichroism spectroscopy of hemoglobin. Methods Enzymol. 76, 175–261.

    Article  CAS  Google Scholar 

  12. Lim M., Jackson T. A., and Anfinrud P. A. (2004) The orientational distribution of CO before and after photolysis of MbCO and HbCO: A determination using time-resolved polarized mid-IR spectroscopy. J. Am. Chem. Soc. 126, 7946–7957.

    Article  CAS  Google Scholar 

  13. Augspurger J. D., Dykstra C. E., and Oldfield E. (1991) Correlation of carbon-13 and oxygen-17 chemical shifts and the vibrational frequency of electrically perturbed carbon monoxide: a possible model for distal ligand effects in carbonmonoxyheme proteins. J. Am. Chem. Soc. 113, 2447–2451.

    Article  CAS  Google Scholar 

  14. Ma J., Huo S., and Straub J. E. (1997) Molecular dynamics simulation study of the B-states of solvated carbon monoxymyoglobin. J. Am. Chem. Soc. 119, 2541–2551.

    Article  CAS  Google Scholar 

  15. Park E. S. and Boxer S. G. (2002) Origins of the sensitivity of molecular vibrations to electric fields: Carbonyl and nitrosyl stretches in model compounds and proteins. J. Phys. Chem. B. 106, 5800–5806.

    Article  CAS  Google Scholar 

  16. Reimers J. R. and Hush N. S. (1999) Vibrational Stark spectroscopy 3. Accurate benchmark ab initio and density functional calculations for CO and CN-. J. Phys. Chem. A 103, 10,580–10,587.

    Article  CAS  Google Scholar 

  17. Andrews S. S. and Boxer S. G. (2002) Vibrational Stark effects of nitriles II. Physical orgins of Stark effects from experiment and perturbation models. J. Phys. Chem. A 10, 469–477.

    Article  Google Scholar 

  18. Park E. S., Andrews S. S., Hu R. B., and Boxer S. G. (1999) Vibrational Stark Spectroscopy in Proteins: A Probe and Calibration for Electrostatic Fields. J. Phys. Chem. B. 103, 9813–9817.

    Article  CAS  Google Scholar 

  19. Lim M., Jackson T. A., and Anfinrud P. A. (1997) Ultrafast rotation and trapping of carbon monoxide dissociated from myoglobin. Nature Struct. Biol. 4, 209–214.

    Article  CAS  Google Scholar 

  20. Alben J. O., Beece D., Browne S. F., Eisenstein L., Frauenfelder H., Good D., Marden M. C., Moh P. P., Reinisch L., Reynolds A. H., and Yue K. T. (1980) Isotope effect in molecular tunneling. Phys. Rev. Lett. 44, 1157–1163.

    Article  CAS  Google Scholar 

  21. Alben J. O., Beece D., Bowne S. F., Doster W., Eisenstein L., Frauenfelder H., Good D., McDonald J. D., Marden M. C., Mo P. P., Reinisch L., Reynolds A. H., Shyamsunder E., and Yue K. T. (1982) Infrared spectroscopy of photodissociated carboxymyoglobin at low temperatures. Proc. Natl. Acad. Sci. USA 79, 3744–3748.

    Article  CAS  Google Scholar 

  22. Schotte F., Lim M., Jackson T. A., Smirnov A. V., Soman J., Olson J. S., Phillips G. N., Jr., Wulff M., and Anfinrud P. A. (2003) Watching a protein as it functions with 150-ps time-resolved x-ray crystallography. Science 300, 1944–1947.

    Article  CAS  Google Scholar 

  23. Ansari A., Berendzen J., Braunstein D. K., Cowen B. R., Frauenfelder H., Hong M. K., Iben I. E. T., Johnson J. B., Ormos P., Sauke T. B., Scholl R., Schulte A., Steinbach P. J., Vittitow J., and Young R. D. (1987) Rebinding and relaxation in the myoglobin pocket. Biophys. Chem. 26, 337–355.

    Article  CAS  Google Scholar 

  24. Balasubramanian S., Lambright D. G., and Boxer S. G. (1993) Perturbation of the distal heme pocket in human myoglobin mutants probed by infrared spectroscopy of bound CO: correlation with ligand binding kinetics. Proc. Natl. Acad. Sci. USA 90, 4718–4722.

    Article  CAS  Google Scholar 

  25. Tian W. D., Sage J. T., Srajer V., and Champion P. M. (1992) Relaxation dynamics of myoglobin in solution. Phys. Rev. Lett. 68, 408–411.

    Article  CAS  Google Scholar 

  26. Kim S., Jin G., and Lim M. (2004) Dynamics of geminate recombination of NO with myoglobin in aqueous solution probed by femtosecond mid-IR spectroscopy. J. Phys. Chem. B., in press.

    Google Scholar 

  27. Petrich J. W., Lambry J. C., Kuczera K., Karplus M., Poyart C., and Martin J. L. (1991) Ligand binding and protein relaxation in heme proteins: a room temperature analysis of nitric oxide geminate recombination. Biochemistry 30, 3975–3987.

    Article  CAS  Google Scholar 

  28. Petrich J. W., Lambry J.-C., Balasubramanian S., Lambright D. G., Boxer S. G., and Martin J. L. (1994) Ultrafast measurements of geminate recombination of NO with site-specific mutants of human myoglobin. J. Mol. Biol. 238, 437–444.

    Article  CAS  Google Scholar 

  29. Lim M., Jackson T. A., and Anfinrud P. A. (1993) Nonexponential protein relaxation: dynamics of conformational change in myoglobin. Proc. Natl. Acad. Sci. USA 90, 5801–5804.

    Article  CAS  Google Scholar 

  30. Venyaminov S. Y. and Prendergast F. G. (1997) Water (H2O and D2O) molar absorptivity in the 1000-4000 cm-1 range and quantitative infrared spectroscopy of aqueous solutions. Anal. Biochem. 248, 234–245.

    Article  CAS  Google Scholar 

  31. Suhre D. R., Singh N. B., Balakrishna V., Fernelius N. C., and Hopkins F. K. (1997) Improved crystal quality and harmonic generation in GaSe doped with indium. Opt. Lett. 22, 775–777.

    Article  CAS  Google Scholar 

  32. Locke B., Lian T., and Hochstrasser R. M. (1995) Erratum of Chemical Physics 158 (1991) 409-419. Chem. Phys. 190, 155.

    Article  CAS  Google Scholar 

  33. Lim M. (2002) The orientation of CO in heme proteins determined by time-resolved mid-IR spectroscopy: anisotropy correction for finite photolysis of an optically thick sample. Bull. Kor. Chem. Soc. 23, 865–871.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Lim, M., Anfinrud, P.A. (2005). Ultrafast Time-Resolved IR Studies of Protein-Ligand Interactions. In: Ulrich Nienhaus, G. (eds) Protein-Ligand Interactions. Methods in Molecular Biology, vol 305. Humana, Totowa, NJ. https://doi.org/10.1385/1-59259-912-5:243

Download citation

  • DOI: https://doi.org/10.1385/1-59259-912-5:243

  • Publisher Name: Humana, Totowa, NJ

  • Print ISBN: 978-1-58829-372-5

  • Online ISBN: 978-1-59259-912-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics