Advertisement

X-Ray Crystallography of Protein-Ligand Interactions

  • Ilme Schlichting
Part of the Methods in Molecular Biology™ book series (MIMB, volume 305)

Abstract

Crystal structures of protein–ligand complexes provide a detailed view of their spatial arrangement and interactions. In the case of stable, unreactive ligands, such as inhibitors or allosteric regulators, the complexes can be generated by cocrystallization or by soaking the ligand into fully grown crystals. In order to obtain highly occupied stochiometric complexes, the concentration and amount of ligand used needs to be considered. Protein complexes with reactive short-lived species that occur in chemical or binding reactions can be determined using monochromatic X-ray diffraction techniques via kinetic trapping approaches. To this end, the kinetics of the reaction has to be determined in the crystalline state and triggering methods to start the reaction need to be established. To facilitate data interpretation, the experimental conditions are usually chosen such that the peak concentration of the reactive species under investigation is maximized.

Key Words

Cocrystallization concentration trapping soaking diffusion triggering cryocrystallography reaction intermediate crystallography monochromatic kinetic crystallography diffraction 

References

  1. 1.
    Hajdu J., Acharya K. R., Stuart D. I., Barford D., and Johnson L. N. (1988) Catalysis in enzyme crystals. Trends Biochem. Sci. 13, 104–109.PubMedCrossRefGoogle Scholar
  2. 2.
    Mozzarelli A. and Rossi G. L. (1996) Protein function in the crystal. Annu. Rev. Biophys. Biomol. Struct. 25, 343–365.PubMedCrossRefGoogle Scholar
  3. 3.
    Schlichting I. (2000) Crystallographic structure determination of unstable species. Acc. Chem Res. 33, 532–538.PubMedCrossRefGoogle Scholar
  4. 4.
    Schlichting I. and Chu K. (2000) Trapping intermediates in the crystal: ligand binding to myoglobin. Curr. Opin. Struct. Biol. 10, 744–752.PubMedCrossRefGoogle Scholar
  5. 5.
    Schmidt K. and Henderson R. (1995) Freeze trapping of reaction intermediates. Curr. Opin. Struct. Biol. 5, 656–663.CrossRefGoogle Scholar
  6. 6.
    Schmidt K. (2001) Time-resolved biochemical crystallography: a mechanistic perspective. Chem. Rev. 101, 1569–1581.CrossRefGoogle Scholar
  7. 7.
    Schmidt K. (1989) Time-resolved macromolecular crystallography. Annu. Rev. Biophys. Biophys. Chem. 18, 309–332.CrossRefGoogle Scholar
  8. 8.
    Petsko G. A. and Ringe D. (2000) Observation of unstable species in enzyme-catalyzed transformations using protein crystallography. Curr. Opin. Chem Biol. 4, 89–94.PubMedCrossRefGoogle Scholar
  9. 9.
    Hajdu J., Neutze R., Sjogren T., Edman K., Szoke A., Wilmouth R. C., and Wilmot C. M. (2000) Analyzing protein functions in four dimensions. Nat. Struct. Biol. 7, 1006–1012.PubMedCrossRefGoogle Scholar
  10. 10.
    Hajdu J. and Andersson I. (1993) Fast crystallography and time-resolved structures. Annu. Rev. Biophys. Biomol. Struct. 22, 467–498.PubMedCrossRefGoogle Scholar
  11. 11.
    Stoddard B. L. and Farber G. K. (1995) Direct measurement of reactivity in the protein crystal by steady-state kinetic studies. Structure 3, 991–996.PubMedCrossRefGoogle Scholar
  12. 12.
    Garman E. F. and Schneider T. R. (1997) Macromolecular Cryocrystallography. J.Appl. Cryst. 30, 211–237.CrossRefGoogle Scholar
  13. 13.
    Schlichting I. and Chu K. (2000) Trapping intermediates in the crystal: ligand binding to myoglobin. Curr. Opin. Struct. Biol. 10, 744–752.PubMedCrossRefGoogle Scholar
  14. 14.
    Stoddard B. L. and Farber G. K. (1995) Direct measurement of reactivity in the protein crystal by steady-state kinetic studies. Structure 3, 991–996.PubMedCrossRefGoogle Scholar
  15. 15.
    Hadfield A. and Hajdu J. (1994) On the photochemical release of phosphate from 3,5-dinitrophenyl phosphate in a protein crystal. J. Mol. Biol. 236, 995–1000.PubMedCrossRefGoogle Scholar
  16. 16.
    Schlichting I. and Goody R. (1997) Triggering methods in kinetic crystallography. Methods in Enzymology 277, 467–490.PubMedCrossRefGoogle Scholar
  17. 17.
    Ohara P., Goodwin P., and Stoddard B. L. (1995) Direct measurement of diffusion rates in enzyme crystals by video absorbance spectroscopy. J. Appl. Cryst. 28, 829–834.CrossRefGoogle Scholar
  18. 18.
    Stoddard B. L. and Farber G. K. (1995) Direct measurement of reactivity in the protein crystal by steady-state kinetic studies. Structure 3, 991–996.PubMedCrossRefGoogle Scholar
  19. 19.
    Verschueren K. H., Seljee F., Rozeboom H. J., Kalk K. H., and Dijkstra B. W. (1993) Crystallographic analysis of the catalytic mechanism of haloalkane dehalogenase. Nature 363, 693–698.PubMedCrossRefGoogle Scholar
  20. 20.
    Singer P. T., Smalas A., Carty R. P., Mangel W. F., and Sweet R. M. (1993) The hydrolytic water molecule in trypsin, revealed by time-resolved Laue crystallography. Science 259, 669–673.PubMedCrossRefGoogle Scholar
  21. 21.
    Petsko G. A. (1985) Diffraction methods for biological macromolecules. Flow cell construction and use. Methods Enzymol. 114, 141–146.PubMedCrossRefGoogle Scholar
  22. 22.
    Douzou P. and Petsko G. A. (1984) Proteins at work: “sstop-action”s pictures at subzero temperatures. Adv. Protein Chem 36, 245–361.PubMedCrossRefGoogle Scholar
  23. 23.
    Douzou P. (1980) Cryoenzymology in aqueous media. Adv. Enzymol. Relat Areas Mol. Biol. 51, 1–74.PubMedGoogle Scholar
  24. 24.
    Douzou P. (1983) Cryoenzymology. Cryobiology 20, 625–635.PubMedCrossRefGoogle Scholar
  25. 25.
    Fulop V., Phizackerley R. P., Soltis S. M., Clifton I. J., Wakatsuki S., Erman J., Hajdu J., and Edwards S. L. (1994) Laue diffraction study on the structure of cytochrome c peroxidase compound I. Structure 2, 201–208.PubMedCrossRefGoogle Scholar
  26. 26.
    Gouet P., Jouve H. M., Williams P. A., Andersson I., Andreoletti P., Nussaume L., and Hajdu J. (1996) Ferryl intermediates of catalase captured by time-resolved Weissenberg crystallography and UV-VIS spectroscopy. Nat. Struct. Biol. 3, 951–956.PubMedCrossRefGoogle Scholar
  27. 27.
    Jouve H. M., Andreoletti P., Gouet P., Hajdu J., and Gagnon J. (1997) Structural analysis of compound I in hemoproteins: study on Proteus mirabilis catalase. Biochimie 79, 667–671.PubMedCrossRefGoogle Scholar
  28. 28.
    Douzou P. and Balny C. (1977) Cryoenzymology in mixed solvents without cosol-vent effects on enzyme specific activity. Proc. Natl. Acad. Set USA 74, 2297–2300.CrossRefGoogle Scholar
  29. 29.
    Rasmussen B. F., Stock A. M., Ringe D., and Petsko G. A. (1992) Crystalline ribonuclease A loses function below the dynamical transition at 220 K. Nature 357, 423–424.PubMedCrossRefGoogle Scholar
  30. 30.
    Weyand M. and Schlichting I. (1999) Crystal structure of wild-type tryptophan synthase complexed with the natural substrate indole-3-glycerol phosphate. Biochemistry 38, 16,469–16,480.PubMedCrossRefGoogle Scholar
  31. 31.
    Stoddard B. L. (1996) Caught in a chemical trap. Nat. Struct. Biol. 3, 907–909.PubMedCrossRefGoogle Scholar
  32. 32.
    Stoddard B. L. (2001) Trapping reaction intermediates in macromolecular crystals for structural analyses. Methods 24, 125–138.PubMedCrossRefGoogle Scholar
  33. 33.
    Stoddard B. L. (1996) Intermediate trapping and laue X-ray diffraction: potential for enzyme mechanism, dynamics, and inhibitor screening. Pharmacol. Ther. 70, 215–256.PubMedCrossRefGoogle Scholar
  34. 34.
    Douzou P. (1979) The study of enzyme mechanisms by a combination of cosolvent, low-temperature and high-pressure techniques. Q. Rev. Biophys. 12, 78.PubMedCrossRefGoogle Scholar
  35. 35.
    Schmidt K. and Henderson R. (1995) Freeze trapping of reaction intermediates. Curr. Opin. Struct. Biol. 5, 656–663.CrossRefGoogle Scholar
  36. 36.
    Schmidt K. (1995) X-ray crystallography at extremely low temperatures. Biotechnology (N. Y.) 13, 133.CrossRefGoogle Scholar
  37. 37.
    Schlichting I. and Chu K. (2000) Trapping intermediates in the crystal: ligand binding to myoglobin. Curr. Opin. Struct. Biol. 10, 744–752.PubMedCrossRefGoogle Scholar
  38. 38.
    Burzlaff N. I., Rutledge P. J., Clifton I. J., Hensgens C. M., Pickford M., Adlington R. M., Roach P. L., and Baldwin J. E. (1999) The reaction cycle of isopenicillin N synthase observed by X-ray diffraction. Nature 401, 721–724.PubMedCrossRefGoogle Scholar
  39. 39.
    Wilmot C. M., Hajdu J., McPherson M. J., Knowles P. F., and Phillips S. E. (1999) Visualization of dioxygen bound to copper during enzyme catalysis. Science 286, 1724–1728.PubMedCrossRefGoogle Scholar
  40. 40.
    Murray J. B., Szoke H., Szoke A., and Scott W. G. (2000) Capture and visualization of a catalytic RNA enzyme-product complex using crystal lattice trapping and X-ray holographic reconstruction. Mol. Cell 5, 279–287.PubMedCrossRefGoogle Scholar
  41. 41.
    Luecke H., Schobert B., Richter H. T., Cartailler J. P., and Lanyi J. K. (1999) Structural changes in bacteriorhodopsin during ion transport at 2 angstrom resolution. Science 286, 255–261.PubMedCrossRefGoogle Scholar
  42. 42.
    Edman K., Nollert P., Royant A., Belrhali H., Pebay-Peyroula E., Hajdu J., Neutze R., and Landau E. M. (1999) High-resolution X-ray structure of an early intermediate in the bacteriorhodopsin photocycle. Nature 401, 822–826.PubMedCrossRefGoogle Scholar
  43. 43.
    Royant A., Edman K., Ursby T., Pebay-Peyroula E., Landau E. M., and Neutze R. (2000) Helix deformation is coupled to vectorial proton transport in the photocycle of bacteriorhodopsin. Nature 406, 645–648.PubMedCrossRefGoogle Scholar
  44. 44.
    Sass H. J., Buldt G., Gessenich R., Hehn D., Neff D., Schlesinger R., Berendzen J., and Ormos P. (2000) Structural alterations for proton transloca-tion in the M state of wild-type bacteriorhodopsin. Nature 406, 649–653.PubMedCrossRefGoogle Scholar
  45. 45.
    Schlichting I., Berendzen J., Chu K., Stock A. M., Maves S. A., Benson D. E., Sweet R. M., Ringe D., Petsko G. A., and Sligar S. G. (2000) The catalytic pathway of cytochrome p450cam at atomic resolution. Science 287, 1615–1622.PubMedCrossRefGoogle Scholar
  46. 46.
    Chu K., Vojtchovsky J., McMahon B. H., Sweet R. M., Berendzen J., and Schlichting I. (2000) Structure of a ligand-binding intermediate in wild-type carbonmonoxy myoglobin. Nature 403, 921–923.PubMedCrossRefGoogle Scholar
  47. 47.
    Genick U. K., Borgstahl G. E., Ng K., Ren Z., Pradervand C., Burke P. M., Srajer V., Teng T. Y., Schildkamp W., McRee D. E., Schmidt K., and Getzoff E. D. (1997) Structure of a protein photocycle intermediate by millisecond time-resolved crystallography. Science 275, 1471–1475.PubMedCrossRefGoogle Scholar
  48. 48.
    Vitkup D., Ringe D., Petsko G. A., and Karplus M. (2000) Solvent mobility and the protein ‘glass’ transition. Nat. Struct. Biol. 7, 34–38.PubMedCrossRefGoogle Scholar
  49. 49.
    Specht A., Ursby T., Weik M., Peng L., Kroon J., Bourgeois D., and Goeldner M. (2001) Cryophotolysis of ortho-nitrobenzyl derivatives of enzyme ligands for the potential kinetic crystallography of macromolecules. Chembiochem. 2, 845–848.PubMedCrossRefGoogle Scholar
  50. 50.
    Ursby T., Weik M., Fioravanti E., Delarue M., Goeldner M., and Bourgeois D. (2002) Cryophotolysis of caged compounds: a technique for trapping intermediate states in protein crystals. Acta Crystallogr. D. Biol. Crystallogr. 58, 607–614.PubMedCrossRefGoogle Scholar
  51. 51.
    Edman K., Royant A., Nollert P., Maxwell C. A., Pebay-Peyroula E., Navarro J., Neutze R., and Landau E. M. (2002) Early structural rearrangements in the photocycle of an integral membrane sensory receptor. Structure (Camb.) 10, 473–482.CrossRefGoogle Scholar
  52. 52.
    Royant A., Edman K., Ursby T., Pebay-Peyroula E., Landau E. M., and Neutze R. (2000) Helix deformation is coupled to vectorial proton transport in the photocycle of bacteriorhodopsin. Nature 406, 645–648.PubMedCrossRefGoogle Scholar
  53. 53.
    Chu K., Vojtchovsky J., McMahon B. H., Sweet R. M., Berendzen J., and Schlichting I. (2000) Structure of a ligand-binding intermediate in wild-type carbonmonoxy myoglobin. Nature 403, 921–923.PubMedCrossRefGoogle Scholar
  54. 54.
    Ostermann A., Waschipky R., Parak F. G., and Nienhaus G. U. (2000) Ligand binding and conformational motions in myoglobin. Nature 404, 205–208.PubMedCrossRefGoogle Scholar
  55. 55.
    Petsko G. A. and Ringe D. (2000) Observation of unstable species in enzyme-catalyzed transformations using protein crystallography. Curr. Opin. Chem Biol. 4, 89–94.PubMedCrossRefGoogle Scholar
  56. 56.
    Schlichting I. (2000) Crystallographic structure determination of unstable species. Acc. Chem Res. 33, 532–538.PubMedCrossRefGoogle Scholar
  57. 57.
    Ringe D. and Petsko G. A. (2003) The ‘glass transition’ in protein dynamics: what it is, why it occurs, and how to exploit it. Biophys. Chem 105, 667–680.PubMedCrossRefGoogle Scholar
  58. 58.
    Scheidig A. J., Burmester C., and Goody R. S. (1999) The pre-hydrolysis state of p21(ras) in complex with GTP: new insights into the role of water molecules in the GTP hydrolysis reaction of ras-like proteins. Structure Fold. Des 7, 1311–1324.PubMedCrossRefGoogle Scholar
  59. 59.
    Perman B., Srajer V., Ren Z., Teng T., Pradervand C., Ursby T., Bourgeois D., Schotte F., Wulff M., Kort R., Hellingwerf K., and Schmidt K. (1998) Energy transduction on the nanosecond time scale: early structural events in a xanthopsin photocycle. Science 279, 1946–1950.PubMedCrossRefGoogle Scholar
  60. 60.
    Kort R., Ravelli R. B., Schotte F., Bourgeois D., Crielaard W., Hellingwerf K. J., and Wulff M. (2003) Characterization of photocycle intermediates in crystalline photoactive yellow protein. Photochem. Photobiol. 78, 131–137.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2005

Authors and Affiliations

  • Ilme Schlichting
    • 1
  1. 1.Department of Biomolecular MechanismsMax Planck Institute for Medical ResearchHeidelbergGermany

Personalised recommendations