Isothermal Titration Calorimetry

  • Edwin A. Lewis
  • Kenneth P. Murphy
Part of the Methods in Molecular Biology™ book series (MIMB, volume 305)

Abstract

Isothermal titration calorimetry is an ideal technique for measuring biological binding interactions. It does not rely on the presence of chromophores or fluorophores, nor does it require an enzymatic assay. Because the technique relies only on the detection of a heat effect upon binding, it can be used to measure the binding constant, K, the enthalpy of binding, ΔH° and the stoichiometry, or number of binding sites, n. This chapter describes instrumentation, experimental design, and the theoretical underpinnings necessary to run and analyze a calorimetric binding experiment.

Key Words

Binding thermodynamics proton linkage enthalpy heat capacity data analysis 

References

  1. 1.
    Hansen L. D., Christensen J. J., and Izatt R. M. (1965) Entropy titration. A calorimetric method for the determination of ΔG° (k), ΔH° and ΔS°. Chem. Comm. 36–38.Google Scholar
  2. 2.
    Christensen J. J., Izatt R. M., Hansen L. D., and Partridge J. M. (1966) Entropy titration. A calorimetric method for the determination of ΔG, ΔH and ΔS from a single thermometric titration. J. Phys. Chem. 70, 2003–2010.CrossRefGoogle Scholar
  3. 3.
    Christensen J. J., Wrathall D. P., Oscarson J. L., and Izatt R. M. (1968) Theoretical evaluation of entropy titration method for calorimetric determination of equilibrium constants in aqueous solution. Anal. Chem. 40, 1713–1717.CrossRefGoogle Scholar
  4. 4.
    Christensen J. J., Izatt R. M., and Eatough D. (1965) Thermodynamics of metal cyanide coordination. V. Log K, ΔH°, and ΔS° values for the Hg2+-cn-system. Inorg. Chem. 4, 1278–1280.CrossRefGoogle Scholar
  5. 5.
    Eatough D. (1970) Calorimetric determination of equilibrium constants for very stable metal-ligand complexes. Anal. Chem. 42, 635–639.CrossRefGoogle Scholar
  6. 6.
    Eatough D. J., Lewis E. A., and Hansen L. D. (1985) Determination of ΔH and Keq values. In Analytical Solution Calorimetry (Grime K., ed.). John Wiley & Sons, New York, NY, pp. 137–161.Google Scholar
  7. 7.
    Beaudette N. V. and Langerman N. (1978) An improved method for obtaining thermal titration curves using micromolar quantities of protein. Anal. Biochem. 90, 693–704.PubMedCrossRefGoogle Scholar
  8. 8.
    Langerman N. and Biltonen R. L. (1979) Microcalorimeters for biological chemistry: Applications, instrumentation and experimental design. Methods Enzymol. 61, 261–286.PubMedCrossRefGoogle Scholar
  9. 9.
    Biltonen R. L. and Langerman N. (1979) Microcalorimetry for biological chemistry: Experimental design, data analysis, and interpretation. Methods Enzymol. 61, 287–318.PubMedCrossRefGoogle Scholar
  10. 10.
    Wiseman T., Williston S., Brandts J. F., and Lin L.-N. (1989) Rapid measurement of binding constants and heats of binding using a new titration calorimeter. Anal. Biochem. 179, 131–137.PubMedCrossRefGoogle Scholar
  11. 11.
    Freire E., Mayorga O. L., and Straume M. (1990) Isothermal titration calorimetry. Anal. Chem. 62, 950A–959A.CrossRefGoogle Scholar
  12. 12.
    Doyle M. L. (1997) Characterization of binding interactions by isothermal titration calorimetry. Curr. Opin. Biotechnol. 8, 31–35.PubMedCrossRefGoogle Scholar
  13. 13.
    Holdgate G. A. (2001) Making cool drugs hot: Isothermal titration calorimetry as a tool to study binding energetics. Biotechniques 31, 164–166, 168, 170 passim.PubMedGoogle Scholar
  14. 14.
    Bundle D. R. and Sigurskjold B. W. (1994) Determination of accurate thermodynamics of binding by titration microcalorimetry. Methods Enzymol. 247, 288–305.PubMedCrossRefGoogle Scholar
  15. 15.
    Fisher H. F. and Singh N. (1995) Calorimetric methods for interpreting proteinligand interactions. Methods Enzymol. 259, 194–221.PubMedCrossRefGoogle Scholar
  16. 16.
    Indyk L. and Fisher H. F. (1998) Theoretical aspects of isothermal titration calorimetry. Methods Enzymol. 295, 350–364.PubMedCrossRefGoogle Scholar
  17. 17.
    Baker B. M. and Murphy K. P. (1996) Evaluation of linked protonation effects in protein binding reactions using isothermal titration calorimetry. Biophys. J. 71, 2049–2055.PubMedCrossRefGoogle Scholar
  18. 18.
    Straume M. and Freire E. (1992) Two-dimensional differential scanning calorimetry: Simultaneous resolution of intrinsic protein structural energetics and ligand binding interactions by global linkage analysis. Anal. Biochem. 203, 259–268.PubMedCrossRefGoogle Scholar
  19. 19.
    Horn J. R., Russell D. M., Lewis E. A., and Murphy K. P. (2001) Van’t hoff and calorimetric enthalpies from isothermal titration calorimetry: Are there significant discrepancies? Biochemistry 40, 1774–1778.PubMedCrossRefGoogle Scholar
  20. 20.
    Briggner L.-E. and Wadsö I. (1991) Test and calibration processes for microcalorimeters, with special reference to heat conduction instruments used with aqueous systems. J. Biochem. Biophys. Methods 22, 101–118.PubMedCrossRefGoogle Scholar
  21. 21.
    Horn J. R., Brandts J. F., and Murphy K. P. (2002) Van’t hoff and calorimetric enthalpies ii: Effects of linked equilibria. Biochemistry 41, 7501–7507.PubMedCrossRefGoogle Scholar
  22. 22.
    Murphy K. P., Freire E., and Paterson Y. (1995) Configurational effects in antibody-antigen interactions determined by micro-calorimetry. Proteins 21, 83–90.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2005

Authors and Affiliations

  • Edwin A. Lewis
    • 1
  • Kenneth P. Murphy
    • 2
  1. 1.Department of Chemistry and BiochemistryNorthern Arizona UniversityFlagstaff
  2. 2.Department of BiochemistryUniversity of IowaIowa City

Personalised recommendations