Skip to main content

Label-Free Detection of Protein-Ligand Interactions by the Quartz Crystal Microbalance

  • Protocol

Part of the book series: Methods in Molecular Biology ((MIMB,volume 305))

Abstract

In recent years the quartz crystal microbalance (QCM) has been accepted as a powerful technique to monitor adsorption processes at interfaces in different chemical and biological research areas. In the last decade, the investigation of adsorption of biomolecules on functionalized surfaces turned out to be one of the paramount applications of the QCM comprising the interaction of nucleic acids, specific molecular recognition of protein-receptor couples, and antigen-antibody reactions realized in immunosensors. The advantage of the QCM technique is that it allows for a label free detection of molecules. This is a result of the fact that the frequency response of the quartz resonator is proportional to the increase in thickness of the adsorbed layer. However, in recent years it became more and more evident that quartz resonators used in fluids are more than mere mass or thickness sensors. The sensor response is also influenced by viscoelastic properties of the adhered biomaterial, surface charges of adsorbed molecules and surface roughness. These phenomena have been used to get new insights in the adhesion process of living cells and to understand their response to pharmacological substances by determining morphological changes of the cells. In this chapter we describe a protocol to explore the kinetics and thermodynamics of specific interactions of different proteins such as lectins and annexins with their ligands using receptor bearing solid supported lipid bilayers.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Sauerbrey G. (1959) Verwendung von Schwingquarzen zur Wägung dünner Schichten und zur Mikrowägung. Z. Phys. 155, 206–222.

    Article  CAS  Google Scholar 

  2. Nomura T. and Okuhara M. (1982) Frequency shifts of piezoelectric quartz crystals immersed in organic liquids. Analytica Chimica Acta 142, 281–284.

    Article  CAS  Google Scholar 

  3. Janshoff A., Galla H.-J., and Steinem C. (2000) Piezoelectric mass-sensing devices as biosensors-an alternative to optical biosensors? Angew. Chem. Int. Ed. 39,4004–4032.

    Article  CAS  Google Scholar 

  4. Janshoff A. and Steinem C. (2001) Quartz crystal microbalance for bioanalytical applications. Sensors Update 9, 313–354.

    Article  CAS  Google Scholar 

  5. Marx K. A. (2003) Quartz crystal microbalance: a useful tool for studying thin polymer films and complex biomolecular systems at the solution-surface interface. Biomacromolecules 4,1099–1120.

    Article  CAS  Google Scholar 

  6. Wegener J., Janshoff A., and Steinem C. (2001) The quartz crystal microbalance as a novel means to study cell-substrate interactions in situ. Cell Biochem. Biophys. 34, 121–151.

    Article  CAS  Google Scholar 

  7. Gerke V. and Weber K. (1984) Identity of p36K phosphorylated upon Rous sarcoma virus transformation with a protein purified from brush borders; calcium-dependent binding to non-erythroid spectrin and F-actin. EMBO J. 3, 227–233.

    Article  CAS  Google Scholar 

  8. Adamczyk Z., Siwek B., Warszynski P., and Musial E. (2001) Kinetics of particle deposition in the radial impinging-jet cell. J. Colloid Interface Sci. 242, 14–24.

    Article  CAS  Google Scholar 

  9. Hillier A. C. and Ward M. D. (1992) Scanning electrochemical mass sensitivity mapping of the quartz crystal microbalance in liquid media. Anal. Chem. 64, 2539–2554.

    Article  CAS  Google Scholar 

  10. Furusawa H., Murakawa A., Fukusho S., and Okahata Y. (2003) In vitro selection of N-peptide-binding RNA on a quartz-crystal microbalance to study a sequence-specific interaction between the pep tide and loop RNA. Chem Bio Chem 4, 217–220.

    Article  CAS  Google Scholar 

  11. Okahata Y., Kawase M., Niikura K., Ohtake F., Furusawa H., and Ebara Y. (1998) Kinetic measurements of DNA hybridization on an oligonucleotide-immobilized 27-MHz quartz crystal microbalance. Anal. Chem. 70, 1288–1296.

    Article  CAS  Google Scholar 

  12. Adamczyk Z. and Werónski P. (1999) Application of the DLVO theory for particle deposition problems. Adv. Colloid Interface Sci. 83, 137–226.

    Article  CAS  Google Scholar 

  13. Adamczyk Z. (2000) Kinetics of diffusion-controlled adsorption of colloid particles and proteins. J. Colloid Interface Sci. 229,477–489.

    Article  CAS  Google Scholar 

  14. Adamczyk Z. (2003) Particle adsorption and deposition: role of electrostatic interactions. Adv. Colloid Interface Sci. 100–102,267–347.

    Article  Google Scholar 

  15. Steinem C., Janshoff A., Ulrich W.-P., Sieber M., and Galla H.-J. (1996) Impedance analysis of supported lipid bilayer membranes: a scrutiny of different preparation techniques. Biochim. Biophys. Acta 1279, 169–180.

    Article  Google Scholar 

  16. Janshoff A., Steinem C., Sieber M., and Galla H.-J. (1996) Specific binding of peanut agglutinin to GM1-doped solid supported lipid bilayers investigated by shear wave resonator measurements. Eur. Biophys. J. 25, 105–113.

    Article  CAS  Google Scholar 

  17. Steinem C., Janshoff A., Wegener J., Ulrich W.-P., Willenbrink W., Sieber M., and Galla H.-J. (1997) Impedance and shear wave resonance analysis of ligand-receptor interaction at functionalized surfaces and of cell monolayers. Biosens. Bioelectronics 43, 339–348.

    Google Scholar 

  18. Gerke V. and Moss S. E. (2002) Annexins: from structure to function. Physiol. Rev. 82,331–371.

    Article  CAS  Google Scholar 

  19. Ross M., Gerke V., and Steinem C. (2003) Membrane composition affects the reversibility of annexin A2t binding to solid supported membranes: a QCM study. Biochemistry 42, 3131–3141.

    Article  CAS  Google Scholar 

  20. Stockbridge N. (1987) EGTA. Comput. Biol. Med. 17,299–304.

    Article  CAS  Google Scholar 

  21. Bandey H. L., Martin S. J., Cernosek R. W., and Hillmann A. R. (1999) Modeling the responses of thickness-shear mode resonators under various loading conditions. Anal. Chem. 71.

    Google Scholar 

  22. Lucklum R. and Hauptmann P. (2003) Transduction mechanism of acoustic-wave based chemical and biochemical sensors. Meas. Sci. Technol. 14,1854–1864.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Janshoff, A., Steinem, C. (2005). Label-Free Detection of Protein-Ligand Interactions by the Quartz Crystal Microbalance. In: Ulrich Nienhaus, G. (eds) Protein-Ligand Interactions. Methods in Molecular Biology, vol 305. Humana, Totowa, NJ. https://doi.org/10.1385/1-59259-912-5:047

Download citation

  • DOI: https://doi.org/10.1385/1-59259-912-5:047

  • Publisher Name: Humana, Totowa, NJ

  • Print ISBN: 978-1-58829-372-5

  • Online ISBN: 978-1-59259-912-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics