Skip to main content

Parkinson’s Disease

Assays for the Ubiquitin Ligase Activity of Neural Parkin

  • Protocol
Ubiquitin-Proteasome Protocols

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 301))

  • 3251 Accesses

Summary

The identification of monogenic variants of Parkinson’s disease (PD) has provided novel insights into its unknown pathogenesis. As the first protein linked to autosomal-recessive forms of PD, Parkin became a welcome tool to explain biochemical and neuropathological observations that had suggested involvement of the ubiquitin-proteasome system (UPS) in PD. Based on cellular expression studies and biochemical in vitro experiments, several researchers ascribed an E3-type, E2-dependent ubiquitin protein ligase activity to wild-type (but not mutant) Parkin proteins. Although the individual components of the proposed Parkin ubiquitin ligase complex in the normal human brain remain to be identified and the E3 ligase effect of Parkin function has not yet been confirmed in an animal model, the scientific exploration of a protein with several links to the UPS has provided many leads in PD research. This chapter describes assays that the authors have used to examine the cellular and in vitro effects of neural Parkin.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jellinger, K. A. and Mizuno, Y. (2003) Parkinson’s disease. In Neurodegeneration: The Molecular Pathology of Dementia and Movement Disorders (Dickson, D. W., ed.), ISN Neuropath Press, Basel, pp. 159–186.

    Google Scholar 

  2. Dauer, W. and Prezdborski, S. (2003) Parkinson’s disease: mechanisms and models. Neuron 39, 889–909.

    Article  PubMed  CAS  Google Scholar 

  3. Chiechanover, A. and Brundin, P. (2003) The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg. Neuron 40, 427–446.

    Article  Google Scholar 

  4. Golbe, L. I. and Maroudian, M. M. (2004) Alpha-synuclein in Parkinson’s disease: light from two new angles. Annal. Neurol. 55, 153–155.

    Article  PubMed  Google Scholar 

  5. Singleton, A., Farrer, M., Johnson J., et al. (2003) Alpha-synuclein locus triplication causes Parkinson’s disease. Science 302, 841.

    Article  PubMed  CAS  Google Scholar 

  6. Kitada, T., Asakawa, S., Hattori, N., et al. (1998) Mutations in the parkin gene cause autosomal-recessive juvenile parkinsonism. Nature 392, 605–608.

    Article  PubMed  CAS  Google Scholar 

  7. Oliveira, S. A., Scott, W. K., Martin, E. R., et al. (2003) Parkin mutations and susceptibility alleles in late-onset Parkinson’s disease. Ann. Neurol. 53, 624–629.

    Article  PubMed  CAS  Google Scholar 

  8. Hasegawa, M., Fujiwara, H., Nonaka, T., et al. (2002) Phosphorylated alpha-synuclein is ubiquitinated in alpha-synucleinopathy lesions. J. Biol. Chem. 277, 49071–49076.

    Article  PubMed  CAS  Google Scholar 

  9. Schlossmacher, M. G., Frosch, M. P., Gai, W. P., et al. (2002) Parkin localizes to the Lewy bodies of Parkinson disease and dementia with Lewy bodies Am. J. Pathol. 160, 1655–1667.

    Article  PubMed  CAS  Google Scholar 

  10. Leroy, E., Boyer, R., Auburger, G., et al. (1998) The ubiquitin pathway in Parkinson’s disease. Nature 395, 451–452.

    Article  PubMed  CAS  Google Scholar 

  11. Liu, Y., Fallon, L., Lashuel, H. A., Liu, Z., and Lansbury, P. T. (2002) The UCH-L1 gene encodes two opposing enzymatic activities that affect alpha-synuclein degradation and Parkinson’s disease susceptibility. Cell 111, 209–218.

    Article  PubMed  CAS  Google Scholar 

  12. Shimura, H., Hattori, N., Kubo, S., et al. (2000) Familial Parkinson disease gene product, parkin, is a ubiquitin-protein ligase Nat. Gen. 25, 302–305.

    Article  CAS  Google Scholar 

  13. Zhang, Y., Gao, J., Chung, K. K., et al. (2000) Parkin functions as an E2-dependent ubiquitin-protein ligase and promotes the degradation of the synaptic vesicle-associated protein, CDCrel-1. Proc. Nat. Acad. Sci. USA 97, 13354–13359.

    Article  PubMed  CAS  Google Scholar 

  14. Imai, Y., Soda, M., and Takahashi, R. (2000) Parkin suppresses unfolded protein stress-induced cell death through its E3 ubiquitin-protein ligase activity. J. Biol. Chem. 275, 35661–35664.

    Article  PubMed  CAS  Google Scholar 

  15. Lücking, C. B., Durr, A., Bonifati, V., et al. (2000) Association between early-onset Parkinson’s disease and mutations in the parkin gene. French Parkinson’s disease genetics study group. N. Engl. J. Med. 342, 1560–1567.

    Article  PubMed  Google Scholar 

  16. Goldberg, M. S., Fleming, S. M., Palacino, J. J., et al. (2003) Parkin-deficient mice exhibit nigrostriatal deficits but no loss of dopaminergic neurons. J. Biol. Chem. 278, 43628–43635.

    Article  PubMed  CAS  Google Scholar 

  17. Itier, J. M., Ibanez, P., Mena, M. A., et al. (2003) Parkin gene inactivation alters behaviour and dopamine neurotransmission in the mouse. Hum. Mol. Gen. 12, 2277–2291.

    Article  PubMed  CAS  Google Scholar 

  18. Shimura, H., Hattori, N., Kubo, S., et al. (1999) Immunohistochemical and subcellular localization of parkin protein: absence of protein in autosomal recessive juvenile parkinsonism patients. Ann. Neurol. 45, 668–672.

    Article  PubMed  CAS  Google Scholar 

  19. Shimura, H., Schlossmacher, M. G., Hattori, N., et al. (2001) Ubiquitination of a new form of alpha-synuclein by parkin from human brain: implications for Parkinson’s disease. Science 293, 263–269.

    Article  PubMed  CAS  Google Scholar 

  20. Cookson, M. R., Lockhart, P. J., McLendon, C., O’Farrell, C., Schlossmacher, M., and Farrer, M. J. (2003) RING finger 1 mutations in parkin produce altered localization of the protein. Hum. Mol. Gen. 12, 2957–2965.

    Article  PubMed  CAS  Google Scholar 

  21. Petrucelli, L., O’Farrell, C., Lockhart, P. J., et al. (2003) Parkin protects against the toxicity associated with mutant alpha-synuclein: proteasome dysfunction selectively affects catecholaminergic neurons. Neuron 36, 1007–1019.

    Article  Google Scholar 

  22. Staropoli, J. F., McDermott, C., Martinat, C., et al. (2003) Parkin is a component of an SCF-like ubiquitin ligase complex and protects postmitotic neurons from kainate toxicity. Neuron 37, 735–749.

    Article  PubMed  CAS  Google Scholar 

  23. Yang, Y., Nishimura, I., Imai, Y., Takahashi, R., and Lu, B. (2003) Parkin suppresses dopaminergic neuron-selective neurotoxicity by Pael-R in Drosophila. Neuron 37, 911–924.

    Article  PubMed  CAS  Google Scholar 

  24. Choi, P., Snyder, H., Petrucelli, H., et al. (2003) SEPT_v2 is a parkin-binding protein. Brain Res. Mol. Brain Res. 117, 179–189.

    Article  PubMed  CAS  Google Scholar 

  25. Kyte, J. and Doolittle, R. F. (1982) A simple method for displaying the hydropathic character of a protein J. Mol. Biol. 157, 105–132.

    Article  PubMed  CAS  Google Scholar 

  26. http://research.bwh.harvard.edu/biopolymer.htm .

  27. http://www.openbiosystems.com/custom_peptide_antibody_services.php .

  28. Martinez, M. C., Ochiishi, T., Majewski, M., and Kosik, S. K. (2003) Dual regulation of neuronal morphogenesis by a delta-catenin-cortactin complex and Rho. J. Cell. Biol. 162, 99–111.

    Article  PubMed  CAS  Google Scholar 

  29. Stoltzner, S. E., Grenfell, T. J., Mori, C., Wisniewski, K. E., Selkoe, D. J., and Lemere, C. A. (2000) Temporal accrual of complement proteins in amyloid plaques in Down’s syndrome with Alzheimer’s disease. Am. J. Pathol. 156, 489–499.

    Article  PubMed  CAS  Google Scholar 

  30. Schlossmacher, M. G., Cullen, V., and Müthing, J. (2005) Glucocerebrosidase, α-synuclein and Parkinson’s disease. New Engl. J. Med., in press.

    Google Scholar 

Download references

Acknowledgments

The authors thank M. Baker for advice regarding antibody production, M. P. Frosch and J. A. Chan for human brain tissue collection, C. Lemere for sharing her immunohistochemical protocol, N. Hattori and Y. Mizuno for the human parkin cDNA, M. Medina for the generation of stably transfected SY5Y cells, and K. S. Rasakham and P. Xu for technical assistance. This work was supported by the Grass Foundation (Braintree, MA), the Lefler Foundation (Harvard Medical School), the M.S.A. Fund (Brigham & Women’s Hospital), and the NINDS-NIH (NS02127) to M. Schlossmacher and a Pergolide Fellowship (Eli Lilly, Japan K. K.) to H. Shimura.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc.

About this protocol

Cite this protocol

Schlossmacher, M.G., Shimura, H. (2005). Parkinson’s Disease. In: Patterson, C., Cyr, D.M. (eds) Ubiquitin-Proteasome Protocols. Methods in Molecular Biology™, vol 301. Humana Press. https://doi.org/10.1385/1-59259-895-1:351

Download citation

  • DOI: https://doi.org/10.1385/1-59259-895-1:351

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-252-0

  • Online ISBN: 978-1-59259-895-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics