Skip to main content

Cyclic Amplification of Protein Misfolding and Aggregation

  • Protocol
Amyloid Proteins

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 299))

Abstract

Diverse human disorders, including most neurodegenerative diseases, are thought to arise from the misfolding and aggregation of an underlying protein. We have recently described a novel technology to amplify cyclically the misfolding and aggregation process in vitro. This procedure, named protein misfolding cyclic amplification (PMCA), conceptually analogous to DNA amplification by PCR, has tremendous implications for research and diagnosis. The PMCA concept has been proved on the amplification of prions implicated in the pathogenesis of transmissible spongiform encephalopathies (TSE). In these diseases, there is a tremendous need for early and sensitive biochemical diagnosis to minimize the further spreading of the prion infectious agent through the food chain. In this chapter, we describe the principles behind the PMCA technology, its application, and methodology to detect minute quantities of misfolded prion protein and its potential to be used for amplification of misfolding of other proteins implicated in diverse diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 134.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Soto, C. (2003) Unfolding the role of protein misfolding in neurodegenerative diseases. Nature Rev. Neurosci. 4, 49–60.

    Article  CAS  Google Scholar 

  2. Soto, C. (2001) Protein misfolding and disease; protein refolding and therapy. FEBS Lett. 498, 204–207.

    Article  PubMed  CAS  Google Scholar 

  3. Dobson, C. M. (1999) Protein misfolding, evolution and disease. Trends Biochem. Sci. 24, 329–332.

    Article  PubMed  CAS  Google Scholar 

  4. Carrell, R. W. and Lomas, D. A. (1997) Conformational disease. Lancet 350, 134–138.

    Article  PubMed  CAS  Google Scholar 

  5. Kelly, J. W. (1996) Alternative conformations of amyloidogenic proteins govern their behavior. Curr. Opin. Struct. Biol. 6, 11–17.

    Article  PubMed  CAS  Google Scholar 

  6. Soto, C. and Saborio, G. P. (2001) Prions: disease propagation and disease therapy by conformational transmission. Trends Mol. Med. 7, 109–114.

    Article  PubMed  CAS  Google Scholar 

  7. Prusiner, S. B. (1991) Molecular biology of prion diseases. Science 252, 1515–1522.

    Article  PubMed  CAS  Google Scholar 

  8. Roos, R., Gajdusek, D. C., and Gibbs, C. J. Jr. (1973) The clinical characteristics of transmissible Creutzfeldt-Jakob disease. Brain 96, 1–20.

    Article  PubMed  CAS  Google Scholar 

  9. Will, R. G., Ironside, J. W., Zeidler, M., et al. (1996) A new variant of Creutzfeldt-Jakob disease in the UK. Lancet 347, 921–925.

    Article  PubMed  CAS  Google Scholar 

  10. Cousens, S. N., Vynnycky, E., Zeidler, M., Will, R. G., and Smith, P. G. (1997) Predicting the CJD epidemic in humans. Nature 385, 197–198.

    Article  PubMed  CAS  Google Scholar 

  11. Bruce, M. E., Will, R. G., Ironside, J. W., et al. (1997) Transmissions to mice indicate that 'new variant CJD is caused by the BSE agent. Nature 389, 498–501.

    Article  PubMed  CAS  Google Scholar 

  12. Soto, C. and Castilla, J. (2004) The controversial protein-only hypothesis of prion propagation. Nat. Med. 10Suppl, S63–S67.

    Article  PubMed  Google Scholar 

  13. Prusiner, S. B. (1998) Prions. Proc. Natl. Acad. Sci. USA 95, 13363–13383.

    Article  PubMed  CAS  Google Scholar 

  14. Pan, K. M., Baldwin, M., Nguyen, J., et al. (1993) Conversion of alpha-helices into beta-sheets features in the formation of the scrapie prion proteins. Proc. Natl. Acad. Sci. USA 90, 10962–10966.

    Article  PubMed  CAS  Google Scholar 

  15. Cohen, F. E. and Prusiner, S. B. (1998) Pathologic conformations of prion proteins. Annu. Rev. Biochem. 67, 793–819.

    Article  PubMed  CAS  Google Scholar 

  16. Baldwin, M. A., Cohen, F. E., and Prusiner, S. B. (1995) Prion protein isoforms, a convergence of biological and structural investigations. J. Biol. Chem. 270, 19197–19200.

    Article  PubMed  CAS  Google Scholar 

  17. Bueler, H., Aguzzi, A., Sailer, A., Greiner, R. A., Autenried, P., Aguet, M., and Weissmann, C. (1993) Mice devoid of PrP are resistant to scrapie. Cell 73, 1339–1347.

    Article  PubMed  CAS  Google Scholar 

  18. DeArmond, S. J. and Prusiner, S. B. (1995) Prion protein transgenes and the neuropathology in prion diseases. Brain Pathol. 5, 77–89.

    Article  Google Scholar 

  19. Kocisko, D. A., Come, J. H., Priola, S. A., et al. (1994) Cell-free formation of protease-resistant prion protein. Nature 370, 471–474.

    Article  PubMed  CAS  Google Scholar 

  20. Lucassen, R., Nishina, K., and Supattapone, S. (2003) In vitro amplification of protease-resistant prion protein requires free sulfhydryl groups. Biochemistry 42, 4127–4135.

    Article  PubMed  CAS  Google Scholar 

  21. Saborio, G. P., Permanne, B., and Soto, C. (2001) Sensitive detection of pathological prion protein by cyclic amplification of protein misfolding. Nature 411, 810–813.

    Article  PubMed  CAS  Google Scholar 

  22. Deleault, N. R., Lucassen, R. W., and Supattapone, S. (2003) RNA molecules stimulate prion protein conversion. Nature 425, 717–720.

    Article  PubMed  CAS  Google Scholar 

  23. Cohen, F. E. (1999) Protein misfolding and prion diseases. J. Mol. Biol. 293, 313–320.

    Article  PubMed  CAS  Google Scholar 

  24. Jarrett, J. T. and Lansbury, P. T. Jr. (1993) Seeding “one-dimensional crystallization” of amyloid: a pathogenic mechanism in Alzheimer's disease and scrapie? Cell 73, 1055–1058.

    Article  PubMed  CAS  Google Scholar 

  25. Harper, J.D. and Lansbury, P. T. Jr. (1997) Models of amyloid seeding in Alzheimer's disease and scrapie: mechanistic truths and physiological consequences of the time-dependent solubility of amyloid proteins. Annu. Rev. Biochem. 66, 385–407.

    Article  PubMed  CAS  Google Scholar 

  26. Masel, J., Jansen, V. A., and Nowak, M. A. (1999) Quantifying the kinetic parameters of prion replication. Biophys. Chem. 77, 139–152.

    Article  PubMed  CAS  Google Scholar 

  27. Caughey, B., Kocisko, D. A., Raymond, G. J., and Lansbury, P. T. Jr. (1995) Aggregates of scrapie-associated prion protein induce the cell-free conversion of protease-sensitive prion protein to the protease-resistant state. Chem. Biol. 2, 807–817.

    Article  PubMed  CAS  Google Scholar 

  28. Masel, J. and Jansen, V. A. (2001) The measured level of prion infectivity varies in a predictable way according to the aggregation state of the infectious agent. Biochim. Biophys. Acta 1535, 164–173.

    PubMed  CAS  Google Scholar 

  29. Prusiner, S. B., McKinley, M. P., Bowman, K. A., et al. (1983) Scrapie prions aggregate to form amyloid-like birefringent rods. Cell 35, 349–358.

    Article  PubMed  CAS  Google Scholar 

  30. Jeffrey, M., Goodbrand, I. A., and Goodsir, C. M. (1995) Pathology of the transmissible spongiform encephalopathies with special emphasis on ultrastructure. Micron. 26, 277–298.

    Article  PubMed  CAS  Google Scholar 

  31. Soto, C., Saborio, G. P., and Anderes, L. (2002) Cyclic amplification of protein misfolding: application to prion-related disorders and beyond. Trends Neurosci. 25, 390–394.

    Article  PubMed  CAS  Google Scholar 

  32. Bessen, R. A., Raymond, G. J., and Caughey, B. (1997) In situ formation of protease-resistant prion protein in transmissible spongiform encephalopathy-infected brain slices. J. Biol. Chem. 272, 15227–15231.

    Article  PubMed  CAS  Google Scholar 

  33. Horiuchi, M. and Caughey, B. (1999) Prion protein interconversions and the transmissible spongiform encephalopathies. Structure Fold. Des. 7, R231–R240.

    Article  PubMed  CAS  Google Scholar 

  34. Kocisko, D. A., Priola, S. A., Raymond, G. J., Chesebro, B., Lansbury, P. T. Jr., and Caughey, B. (1995) Species specificity in the cell-free conversion of prion protein to protease-resistant forms: a model for the scrapie species barrier. Proc. Natl. Acad. Sci. USA 92, 3923–3927.

    Article  PubMed  CAS  Google Scholar 

  35. Chabry, J., Caughey, B., and Chesebro, B. (1998) Specific inhibition of in vitro formation of protease-resistant prion protein by synthetic peptides. J. Biol. Chem. 273, 13203–13207.

    Article  PubMed  CAS  Google Scholar 

  36. Caughey, B., Raymond, G. J., and Bessen, R. A. (1998) Strain-dependent differences in beta-sheet conformations of abnormal prion protein. J. Biol. Chem. 273, 32230–32235.

    Article  PubMed  CAS  Google Scholar 

  37. Aguzzi, A. and Weissmann, C. (1997) Prion research: the next frontiers. Nature 389, 795–798.

    Article  PubMed  CAS  Google Scholar 

  38. Weber, T., Otto, M., Bodemer, M., and Zerr, I. (1997) Diagnosis of Creutzfeldt-Jakob disease and related human spongiform encephalopathies. Biomed. Pharmacother. 51, 381–387.

    Article  PubMed  CAS  Google Scholar 

  39. Steinhoff, B. J., Racker, S., Herrendorf, G., et al. (1996) Accuracy and reliability of periodic sharp wave complexes in Creutzfeldt-Jakob disease. Arch. Neurol. 53, 162–166.

    PubMed  CAS  Google Scholar 

  40. Budka, H., Aguzzi, A., Brown, P., et al. (1995) Neuropathological diagnostic criteria for Creutzfeldt-Jakob disease (CJD) and other human spongiform encephalopathies (prion diseases). Brain Pathol. 5,459–466.

    Article  PubMed  CAS  Google Scholar 

  41. Collinge, J. (2001) Prion diseases of humans and animals: their causes and molecular basis. Annu. Rev. Neurosci. 24, 519–550.

    Article  PubMed  CAS  Google Scholar 

  42. Frosh, A., Joyce, R., and Johnson, A. (2001) Iatrogenic vCJD from surgical instruments. BMJ 322, 1558–1559.

    Article  PubMed  CAS  Google Scholar 

  43. Soto, C. (2004) Diagnosing prion diseases: needs, challenges, and hopes. Nature Rev. Microbiol., in press.

    Google Scholar 

  44. Schiermeier, Q. (2001) Testing times for BSE. Nature 409, 658–659.

    Article  PubMed  CAS  Google Scholar 

  45. Anonymous (2001) Scientists race to develop a blood test for vCJD. Nat. Med. 7, 261.

    Article  Google Scholar 

  46. Ingrosso, L., Vetrugno, V., Cardone, F., and Pocchiari, M. (2002) Molecular diagnostics of transmissible spongiform encephalopathies. Trends Mol. Med. 8,273–280.

    Article  PubMed  CAS  Google Scholar 

  47. Aguzzi, A. (2000) Prion diseases, blood and the immune system: concerns and reality. Haematologica 85, 3–10.

    PubMed  CAS  Google Scholar 

  48. Brown, P., Cervenakova, L., and Diringer, H. (2001) Blood infectivity and the prospects for a diagnostic screening test in Creutzfeldt-Jakob disease. J. Lab. Clin. Med. 137,5–13.

    Article  PubMed  CAS  Google Scholar 

  49. Wadsworth, J. D., Joiner, S., Hill, A. F., et al. (2001) Tissue distribution of protease resistant prion protein in variant Creutzfeldt-Jakob disease using a highly sensitive immunoblotting assay. Lancet 358, 171–180.

    Article  PubMed  CAS  Google Scholar 

  50. Carrell, R. W. and Lomas, D. A. (1997) Conformational disease. Lancet 350, 134–138.

    Article  PubMed  CAS  Google Scholar 

  51. Lomakin, A., Chung, D. S., Benedek, G. B., Kirschner, D. A., and Teplow, D. B. (1996) On the nucleation and growth of amyloid beta-protein fibrils: detection of nuclei and quantitation of rate constants. Proc. Natl. Acad. Sci. USA 93, 1125–1129.

    Article  PubMed  CAS  Google Scholar 

  52. Teplow, D. B. (1998) Structural and kinetic features of amyloid beta-protein fibrillogenesis. Amyloid 5, 121–142.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc.

About this protocol

Cite this protocol

Saá, P., Castilla, J., Soto, C. (2005). Cyclic Amplification of Protein Misfolding and Aggregation. In: Sigurdsson, E.M. (eds) Amyloid Proteins. Methods in Molecular Biology™, vol 299. Humana Press. https://doi.org/10.1385/1-59259-874-9:053

Download citation

  • DOI: https://doi.org/10.1385/1-59259-874-9:053

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-337-4

  • Online ISBN: 978-1-59259-874-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics