In Vitro Preparation of Prefibrillar Intermediates of Amyloid-β and α Synuclein

  • Hilal A. Lashuel
  • Dolors Grillo-Bosch
Part of the Methods in Molecular Biology™ book series (MIMB, volume 299)


Elucidating the structural properties of early intermediates (protofibrils) on the fibril formation pathway of Aβ and α-synuclein, the structural relationship among the different intermediates and their relationship to the structure of the amyloid fibrils is critical for understanding the roles of amyloid fibril formation in the pathogenesis of Alzheimer's and Parkinson's diseases. In this chapter we discuss several methods, developed by different laboratories, that enable the preparation and stabilization of amyloid-β and α-synuclein protofibrillar species of defined morphologies for biochemical, biophysical and toxicity studies.

Key Words

Alzheimer's disease (AD) Parkinson's disease (PD) amyloid fibrils protofibrils oligomers amyloid-β(Aβ) derived diffusible ligand (ADDLS) amylospheriods annular structures pores size exclusion chromatography (SEC) electron microscopy (EM) atomic force microscopy (AFM) analytical ultracentrifugation (AU) scanning transmission electron microscopy (STEM) arctic variant (E22G) wild-type (WT). 


  1. 1.
    Kelly, J. W. (1998) The alternative conformations of amyloidogenic proteins and their multi-step assembly pathways. Curr. Opin. Struct. Biol. 8(1), 101–106.PubMedCrossRefGoogle Scholar
  2. 2.
    Rochet, J. and Lansbury, P. T. Jr. (2000) Amyloid fibrillogenesis: themes and variations. Curr. Opin. Struct. Biol. 10(1), 60–68.PubMedCrossRefGoogle Scholar
  3. 3.
    Golberg, M. S. and Lansbury, P.T. Jr. (2000) Is there a cause-and-effect relationship between alpha-synuclein fibrillization and Parkinson' disease? Nat. Cell Biol. 2(7), E115–E119.CrossRefGoogle Scholar
  4. 4.
    Caughey, B. and Lansbury, P. T. (2003) Protofibrils, pores, fibrils, and neurodegeneration: separating the responsible protein aggregates from the innocent bystanders. Annu. Rev. Neurosci. 26, 267–298.PubMedCrossRefGoogle Scholar
  5. 5.
    Volles, M. J. and Lansbury, P. T. Jr. (2003) Zeroing in on the pathogenic form of alpha-synuclein and its mechanism of neurotoxicity in Parkinson' disease. Biochemistry 42(26), 7871–7878.PubMedCrossRefGoogle Scholar
  6. 6.
    Lashuel, H., et al. (2002) alpha-Synuclein, especially the Parkinson's disease-associated mutants, forms pore-like annular and tubular protofibrils. J. Mol. Biol. 322(5), 1089.PubMedCrossRefGoogle Scholar
  7. 7.
    Lashuel, H. A., et al. (2002) Neurodegenerative disease: amyloid pores from pathogenic mutations. Nature 418(6895), 291.PubMedCrossRefGoogle Scholar
  8. 8.
    Ding, T. T., et al. (2002) Annular alpha-synuclein protofibrils are produced when spherical protofibrils are incubated in solution or bound to brain-derived membranes. Biochemistry 41(32), 10209–10217.PubMedCrossRefGoogle Scholar
  9. 9.
    Conway, K. A., et al. (2000) Acceleration of oligomerization, not fibrillization, is a shared property of both alpha-synuclein mutations linked to early-onset Parkinson' disease: implications for pathogenesis and therapy. Proc. Natl. Acad. Sci. USA 97(2), 571–576.PubMedCrossRefGoogle Scholar
  10. 10.
    Harper, J. D., et al. (1999) Assembly of A beta amyloid protofibrils: an in vitro model for a possible early event in Alzheimer' disease. Biochemistry 38(28), 8972–8980.PubMedCrossRefGoogle Scholar
  11. 11.
    Harper, J. D., Lieber, M., and Lansbury, P. T. Jr. (1997) Atomic force microscopic imaging of seeded fibril formation and fibril branching by the Alzheimer' disease amyloid-beta protein. Chem. Biol. 4(12), 951–959.PubMedCrossRefGoogle Scholar
  12. 12.
    Lashuel, H., et al. (2003) Mixtures of wild-type and “Arctic” Abeta40 in vitro accumulate protofibrils, including amyloid pores. J. Mol. Biol. 332(4), 795–808.PubMedCrossRefGoogle Scholar
  13. 13.
    Pollanen, M. S., Dickson, D. W., and Bergeron, (1993) Pathology and biology of the Lewy body. J. Neuropathol. Exp. Neurol. 52(3), 183–191.PubMedCrossRefGoogle Scholar
  14. 14.
    Forno, L. S. (1996) Neuropathology of Parkinson' disease. J. Neuropathol. Exp. Neurol. 55(3), 259–272.PubMedCrossRefGoogle Scholar
  15. 15.
    Selkoe, D. J. (1997) Alzheimer' disease: genotypes, phenotypes, and treatments. Science 275(5300), 630–631.PubMedCrossRefGoogle Scholar
  16. 16.
    .Castano, E. M. and Frangione, B. (1988) Biology of disease human amyloidosis, Alzheimer disease and related disorders. Lab. Invest. 58(2), 122–132.PubMedGoogle Scholar
  17. 17.
    Selkoe, D. J. (2000) Toward a comprehensive theory for Alzheimer's disease. Hypothesis: Alzheimer%s disease is caused by the cerebral accumulation and cytotoxicity of amyloid beta-protein. Ann. NY Acad. Sci. 924, 17–25.PubMedCrossRefGoogle Scholar
  18. 18.
    Wang, R., et al. (1996) The profile of soluble amyloid beta protein in cultured cell media. Detection and quantification of amyloid beta protein and variants by immunoprecipitation-mass spectrometry. J. Biol. Chem. 271(50), 31894–31902.PubMedCrossRefGoogle Scholar
  19. 19.
    Janus, C., et al. (2001) New developments in animal models of Alzheimer's disease. Curr. Neurol. Neurosci. Rep. 1(5), 451–457.PubMedCrossRefGoogle Scholar
  20. 20.
    Lichtenthaler, S. F., et al. (1997) Mutations in the transmembrane domain of APP altering gamma-secretase specificity. Biochemistry 36(49), 15396–15403.PubMedCrossRefGoogle Scholar
  21. 21.
    Janus, C., et al. (2000) A beta peptide immunization reduces behavioural impairment and plaques in a model of Alzheimer' disease. Nature 408(6815), 979–982.PubMedCrossRefGoogle Scholar
  22. 22.
    Morgan, D., et al. (2000) A beta peptide vaccination prevents memory loss in an animal model of Alzheimer' disease. Nature 408(6815), 982–985.PubMedCrossRefGoogle Scholar
  23. 23.
    Nilsberth, C., et al. (2001) The Arctic' APP mutation (E693G) causes Alzheimer' disease by enhanced Abeta protofibril formation. Nat. Neurosci. 4(9), 887–893.PubMedCrossRefGoogle Scholar
  24. 24.
    Hoshi, M., et al. (2003) Spherical aggregates of beta-amyloid (amylospheroid) show high neurotoxicity and activate tau protein kinase I/glycogen synthase kinase-3beta. Proc. Natl. Acad. Sci. USA 100(11), 6370–6375.PubMedCrossRefGoogle Scholar
  25. 25.
    Lambert, M. P., et al. (2001) Vaccination with soluble Abeta oligomers generates toxicity-neutralizing antibodies. J. Neurochem. 79(3), 595–605.PubMedCrossRefGoogle Scholar
  26. 26.
    Stine, W. B. Jr., et al. (2003) In vitro characterization of conditions for amyloidbeta peptide oligomerization and fibrillogenesis. J. Biol. Chem. 278(13), 11612–11622.PubMedCrossRefGoogle Scholar
  27. 27.
    Dahlgren, K. N., et al. (2002) Oligomeric and fibrillar species of amyloid-beta peptides differentially affect neuronal viability. J. Biol. Chem. 277,32046–32053.PubMedCrossRefGoogle Scholar
  28. 28.
    Lambert, M. P., et al. (1998) Diffusible, nonfibrillar ligands derived from Abeta1-42 are potent central nervous system neurotoxins. Proc. Natl. Acad. Sci. USA 95(11), 6448–6453.PubMedCrossRefGoogle Scholar
  29. 29.
    Klein, W. L. (2002) ADDLs & protofibrils-the missing links? Neurobiol. Aging 23(2), 231–235.PubMedCrossRefGoogle Scholar
  30. 30.
    Klein, W. L., Krafft, G. A., and Finch, E. (2001) Targeting small Abeta oligomers: the solution to an Alzheimer's disease conundrum? Trends Neurosci. 24(4), 219–224.PubMedCrossRefGoogle Scholar
  31. 31.
    Wang, H. W., et al. (2002) Soluble oligomers of beta amyloid (1–42) inhibit longterm potentiation but not long-term depression in rat dentate gyrus. Brain Res. 924(2), 133–140.PubMedCrossRefGoogle Scholar
  32. 32.
    Harper, J. D., et al. (1997) Observation of metastable Abeta amyloid protofibrils by atomic force microscopy. Chem. Biol. 4(2), 119–125.PubMedCrossRefGoogle Scholar
  33. 33.
    Walsh, D. M., et al. (1997) Amyloid beta-protein fibrillogenesis. Detection of a protofibrillar intermediate. J. Biol. Chem. 272(35), 22364–22372.PubMedCrossRefGoogle Scholar
  34. 34.
    Walsh, D. M., et al. (1999) Amyloid beta-protein fibrillogenesis. Structure and biological activity of protofibrillar intermediates. J. Biol. Chem. 274(36), 25945–25952.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2005

Authors and Affiliations

  • Hilal A. Lashuel
    • 1
  • Dolors Grillo-Bosch
    • 2
  1. 1.Center for Neurologic Diseases, Brigham and Women's Hospital and Department of NeurologyHarvard Medical SchoolCambridge
  2. 2.Departament de Quimica OrganicaUniversitat de BarcelonaBarcelonaSpain

Personalised recommendations