Skip to main content

Differential Display

Theory and Applications

  • Protocol
Medical Biomethods Handbook

Part of the book series: Springer Protocols Handbooks ((SPH))

  • 2002 Accesses

Abstarct

Recent data released by the Human Genome Consortium and Celera Genomics estimates that the human genome might contain about 30,000 protein coding genes (1, and references therein), of which about 15‰ are believed to be expressed in any given cell type (see Chapter 42). The set of expressed proteins and the corresponding messenger RNAs, termed the transcriptome, defines the phenotype of a given cell, tissue, as well as the whole organism. The identification of genes that are differentially expressed under various physiological conditions is one of the major challenges in molecular biology today, as it provides an overview of the regulatory changes that take place in health and disease and highlights potential targets for drug discovery and therapeutic intervention (2). Tremendous efforts are generally required to identify those changes, as the population of altered messengers rarely comprises more than 1‰ of the total transcripts. Over the years, a variety of methods for the identification of differentially regulated genes in cells and tissues have been developed. Northern hybridization (3), nuclease protection (4), and subtractive (5) and differential (6) hybridization all have a number of serious drawbacks because they measure only single RNA species at a time and require a relatively large amount of starting material. The latter is particularly significant because rare transcripts, which often represent low-abundant cell cycle regulators, growth factors, and their receptors as well as signal transduction components, might be missed during the analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Subramanian, G., Adams, M. D., Venter, J. C., Broder, S. (2001) Implications of the human genome for understanding human biology and medicine. JAMA 286, 2296–2307.

    PubMed  CAS  Google Scholar 

  2. Gooley, A. A. and Packer, N. H. (1997) The importance of protein co-and post-translational modifications in proteome projects, in Proteome Research: New Frontiers in Functional Genomics (Principles and Practice) (Wilkins, M. R., Williams, K. L., Appel, R. D., and Hochstrasser, D. F., eds.), Springer-Verlag, Berlin, pp. 65–91.

    Google Scholar 

  3. Alwine, J. C., Kemp, D. J., and Stark, G. R. (1977) Method for detection of specific RNAs in agarose gels by transfer to diazobenzyloxymethyl-paper and hybridization with DNA probes. Proc. Natl. Acad. Sci. USA 74, 5350–5354.

    PubMed  CAS  Google Scholar 

  4. Tymms, M. J. (1995) Quantitative measurement of mRNA using the RNase protection assay, in In vitro Transcription and Translation Protocols (Tymms, M. J., ed.), Humana, Totowa, NJ, pp. 31–46.

    Google Scholar 

  5. Zimmermann, C. R., Orr, W. C., Leclerc, R. F., Barnard, E. C., and Timberlake, W. E. (1980) Molecular cloning and selection of genes regulated in Aspergillus development. Cell 21, 709–715.

    PubMed  CAS  Google Scholar 

  6. St John, T. P. and Davis, R. W. (1979) Isolation of galactose-inducible DNA sequences from Saccharomyces cerevisiae by differential plaque filter hybridization. Cell 16, 443–452.

    PubMed  CAS  Google Scholar 

  7. Liang, P. and Pardee, A. B. (1992) Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction. Science 257, 967–971.

    PubMed  CAS  Google Scholar 

  8. Stein, J. and Liang, P. (2002) Differential display technology: a general guide. Cell. Mol. Life. Sci. 59, 1235–1240.

    PubMed  CAS  Google Scholar 

  9. Liang, P. (2002) A decade of differential display. Biotechniques 33, 338–346.

    PubMed  CAS  Google Scholar 

  10. Matz, M. V. and Lukyanov, S. A. (1998) Different strategies of differential display: areas of application. Nucleic. Acids. Res. 26, 5537–5543.

    PubMed  CAS  Google Scholar 

  11. Velculescu, V. E., Zhang, L., Vogelstein, B., and Kinzler, K. W. (1995) Serial analysis of gene expression. Science 270, 484–487.

    PubMed  CAS  Google Scholar 

  12. Schena, M., Shalon, D., Davis, R. W., and Brown, P. O. (1995) Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270, 467–470.

    PubMed  CAS  Google Scholar 

  13. Lipshutz, R. J., Fodor, S. P., Gingeras, T. R., and Lockhart, D. J. (1999) High density synthetic oligonucleotide arrays. Nature Genet. 21, 20–24.

    PubMed  CAS  Google Scholar 

  14. Welsh, J., Chada, K., Dalal, S. S., Cheng, R., Ralph, D., and McClelland, M. (1992) Arbitrarily primed PCR fingerprinting of RNA. Nucleic Acids. Res. 20, 4965–4970.

    PubMed  CAS  Google Scholar 

  15. Liang, P., Bauer, D., Averboukh, L., et al. (1995) Analysis of altered gene expression by differential display. Methods Enzymol. 254, 304–321.

    PubMed  CAS  Google Scholar 

  16. Welsh, J. and McClelland, M. (1990) Fingerprinting genomes using PCR with arbitrary primers. Nucleic Acids Res. 18, 7213–7218.

    PubMed  CAS  Google Scholar 

  17. Bauer, D., Muller, H., Reich, J., et al. (1993) Identification of differentially expressed mRNA species by an improved display technique (DDRT-PCR). Nucleic Acids Res. 21, 4272–4280.

    PubMed  CAS  Google Scholar 

  18. McClelland, M. and Welsh, J. (1994) DNA fingerprinting by arbitrarily primed PCR. PCR Methods Applic. 4, S59–S65.

    CAS  Google Scholar 

  19. Gall, J. G. and Pardue, M. L. (1969) Formation and detection of RNA-DNA hybrid molecules in cytological preparations. Proc. Natl. Acad. Sci. USA 63, 378–383.

    PubMed  CAS  Google Scholar 

  20. John, H. A., Birnstiel, M. L., and Jones, K. W. (1969) RNA-DNA hybrids at the cytological level. Nature 223, 582–587.

    PubMed  CAS  Google Scholar 

  21. Rohde, M., Hummel, R., Pallisgaard, N., et al. (1997) Identification and cloning of differentially expressed genes by DDRT-PCR, In PCR Cloning Protocols: From Molecular Cloning to Genetic Engineering (White, B. A., ed.), Humana, Totowa, NJ, pp. 419–430.

    Google Scholar 

  22. Nakayama, H., Yokoi, H., and Fujita, J. (1992) Quantification of mRNA by non-radioactive RTPCR and CCD imaging system. Nucleic Acids Res. 20, 4939.

    PubMed  CAS  Google Scholar 

  23. Breyne, P. and Zabeau, M. (2001) Genome-wide expression analysis of plant cell cycle modulated genes. Curr. Opin. Plant Biol. 4, 136–142.

    PubMed  CAS  Google Scholar 

  24. Liang, P., Averboukh, L., and Pardee, A. B. (1993) Distribution and cloning of eukaryotic mRNAs by means of differential display: refinements and optimization. Nucleic Acids Res. 21, 3269–3275.

    PubMed  CAS  Google Scholar 

  25. Wan, J. S., Sharp, S. J., Poirier, G. M., et al. (1996) Cloning differentially expressed mRNAs. Nature Biotechnol. 14, 1685–1691.

    CAS  Google Scholar 

  26. Liang, P. and Pardee, A. B. (1995) Recent advances in differential display. Curr. Opin. Immunol. 7, 274–280.

    PubMed  CAS  Google Scholar 

  27. Colonna-Romano, S., Leone, A., and Maresca, B. (1998) Differential Display Reverse Transcription-PCR (DDRT-PCR). Lab Manual, Springer-Verlag, Berlin.

    Google Scholar 

  28. Medhurst, A.D., Chambers, D., Gray, J., et al. (2000) Practical aspects of the experimental design for differential display of transcripts obtained from complex tissue, in Differential Display: A Practical Approach (Leslie, R. A. and Robertson, H. A., eds.), Oxford University Press, Oxford, pp. 35–64.

    Google Scholar 

  29. Ahmed, F. E. (2002) Molecular techniques for studying gene expression in carcinogenesis. J. Environ. Sci. Health C. Environ: Carcinog. Ecotoxicol. Rev. 20, 77–116.

    Google Scholar 

  30. Broude, N. E. (2002) Differential display in the time of microarrays. Expert Rev. Mol. Diagn. 2, 209–216.

    PubMed  CAS  Google Scholar 

  31. Matz, M., Usman, N., Shagin, D., Bogdanova, E., and Lukyanov, S. (1997) Ordered differential display: a simple method for systematic comparison of gene expression profiles. Nucleic Acids Res. 25, 2541–2542.

    PubMed  CAS  Google Scholar 

  32. Chen, Z. J., Shen, H., and Tew, K. D. (2001) Gene expression profiling using a novel method: amplified differential gene expression (ADGE). Nucleic Acids Res. 29, E46.

    PubMed  CAS  Google Scholar 

  33. Sutcliffe, J. G., Foye, P. E., Erlander, M. G., et al. (2000) TOGA: an automated parsing technology for analyzing expression of nearly all genes. Proc. Natl. Acad. Sci. USA 97, 1976–1981.

    PubMed  CAS  Google Scholar 

  34. Lo, D., Hilbush, B., and Sutcliffe, J. G. (2001) TOGA analysis of gene expression to accelerate target development. Eur. J. Pharm. Sci. 14, 191–196.

    PubMed  CAS  Google Scholar 

  35. Kornmann, B., Preitner, N., Rifat, D., Fleury-Olela, F., and Schibler, U. (2001) Analysis of circadian liver gene expression by ADDER, a highly sensitive method for the display of differentially expressed mRNAs. Nucleic Acids Res. 29, E51–1.

    PubMed  CAS  Google Scholar 

  36. Green, C. D., Simons, J. F., Taillon, B. E., and Lewin, D. A. (2001) Open systems: panoramic views of gene expression. J. Immunol. Methods. 250, 67–79.

    PubMed  CAS  Google Scholar 

  37. Fischer, A., Saedler, H., and Theissen, G. (1995) Restriction fragment length polymorphism-coupled domain-directed differential display: a highly efficient technique for expression analysis of multigene families. Proc. Natl. Acad. Sci. USA 92, 5331–5335.

    PubMed  CAS  Google Scholar 

  38. Stone, B. and Wharton, W. (1994) Targeted RNA fingerprinting: the cloning of differentiallyexpressed cDNA fragments enriched for members of the zinc finger gene family. Nucleic Acids Res. 22, 2612–2618.

    PubMed  CAS  Google Scholar 

  39. Tohonen, V., Osterlund, C., and Nordqvist, K. (1998) Testatin: a cystatin-related gene expressed during early testis development. Proc. Natl. Acad. Sci. USA 95, 14208–14213.

    PubMed  CAS  Google Scholar 

  40. Chomczynski, P. and Sacchi, N. (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 162, 156–159.

    PubMed  CAS  Google Scholar 

  41. Raha, S., Ling, M., and Merante, F. (1998) Extraction of total RNA from tissues and cultured cells, in Molecular Biomethods Handbook (Rapley, R. and Walker, J. M., eds.), Humana, Totowa, NJ, 1–8.

    Google Scholar 

  42. Bhaya, D., Vaulot, D., Amin, P., Takahashi, A. W., and Grossman, A. R. (2000) Isolation of regulated genes of the cyanobacterium Synechocystis sp. strain PCC 6803 by differential display. J. Bacteriol. 182, 5692–5699.

    PubMed  CAS  Google Scholar 

  43. Brzostowicz, P. C., Gibson, K. L., Thomas, S. M., Blasko, M. S., and Rouviere, P. E. (2000) Simultaneous identification of two cyclohexanone oxidation genes from an environmental Brevibacterium isolate using mRNA differential display. J. Bacteriol. 182, 4241–4248.

    PubMed  CAS  Google Scholar 

  44. Guimaraes, M.J., Lee, F., Zlotnik, A., McClanahan, T. (1995) Differential display by PCR: novel findings and applications. Nucleic. Acids. Res. 23, 1832–1833.

    PubMed  CAS  Google Scholar 

  45. Zhao, S., Ooi, S. L., and Pardee, A. B. (1995) New primer strategy improves precision of differential display. Biotechniques 18, 848–850.

    Google Scholar 

  46. Rohrwild, M., Alpan, R. S., Liang, P., and Pardee, A. B. (1995) Inosine-containing primers for mRNA differential display. Trends. Genet. 11, 300.

    PubMed  CAS  Google Scholar 

  47. Diachenko, L. B., Ledesma, J., Chenchik, A. A., and Siebert, P. D. (1996) Combining the technique of RNA fingerprinting and differential display to obtain differentially expressed mRNA. Biochem. Biophys. Res. Commun. 219, 824–828.

    PubMed  CAS  Google Scholar 

  48. Lukyanov, K., Diatchenko, L., Chenchik, A., et al. (1997) Construction of cDNA libraries from small amounts of total RNA using the suppression PCR effect. Biochem. Biophys. Res. Commun. 230, 285–288.

    PubMed  CAS  Google Scholar 

  49. Vos, P., Hogers, R., Bleeker, M., et al. (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res. 23, 4407–4414.

    PubMed  CAS  Google Scholar 

  50. McClelland, M., Mathieu-Daude, F., and Welsh, J. (1995) RNA fingerprinting and differential display using arbitrarily primed PCR. Trends Genet. 11, 242–246.

    PubMed  CAS  Google Scholar 

  51. Bertioli, D. J., Schlichter, U. H., Adams, M. J., Burrows, P. R., Steinbiss, H.H., and Antoniw, J. F. (1995) An analysis of differential display shows a strong bias towards high copy number mRNAs. Nucleic Acids Res. 23, 4520–4523.

    PubMed  CAS  Google Scholar 

  52. Graf, D., Fisher, A. G., and Merkenschlager, M. (1997) Rational primer design greatly improves differential display-PCR (DD-PCR). Nucleic Acids Res. 25, 2239–2240.

    PubMed  CAS  Google Scholar 

  53. Hakvoort, T. B., Leegwater, A. C., Michiels, F. A., Chamuleau, R. A., and Lamers, W. H. (1994) Identification of enriched sequences from a cDNA subtraction-hybridization procedure. Nucleic Acids Res. 22, 878–879.

    PubMed  CAS  Google Scholar 

  54. Ariazi, E. A. and Gould, M. N. (1996) Identifying differential gene expression in monoterpenetreated mammary carcinomas using subtractive display. J. Biol. Chem. 271, 29,286–29,294.

    PubMed  CAS  Google Scholar 

  55. Fuchs, B., Zhang, K., Bolander, M. E., and Sarkar, G. (2000) Identification of differentially expressed genes by mutually subtracted RNA fingerprinting. Anal. Biochem. 286, 91–98.

    PubMed  CAS  Google Scholar 

  56. Gromova, I., Gromov, P., and Celis, J. E. (2001) A novel member of the glycosyltransferase family, beta 3 Gn-T2, highly downregulated in invasive human bladder transitional cell carcinomas. Mol. Carcinog. 32, 61–72.

    PubMed  CAS  Google Scholar 

  57. Gromova, I., Gromov, P., and Celis, J. E. (2002) bc10: a novel human bladder cancer-associated protein with a conserved genomic structure downregulated in invasive cancer. Int. J. Cancer 98, 539–546.

    PubMed  CAS  Google Scholar 

  58. Sokolov, B. P. and Prockop, D. J. (1994) A rapid and simple PCR-based method for isolation of cDNAs from differentially expressed genes. Nucleic Acids Res. 22, 4009–4015.

    PubMed  CAS  Google Scholar 

  59. Lohmann, J., Schickle, H., and Bosch, T. C. (1995) REN display, a rapid and efficient method for nonradioactive differential display and mRNA isolation. Biotechniques 18, 200–202.

    PubMed  CAS  Google Scholar 

  60. Ito, T., Kito, K., Adati, N., Mitsui, Y., Hagiwara, H., and Sakaki, Y. (1994) Fluorescent differential display: arbitrarily primed RT-PCR fingerprinting on an automated DNA sequencer. FEBS Lett. 351, 231–236.

    PubMed  CAS  Google Scholar 

  61. An, G., Luo, G., Veltri, R. W., and O’Hara, S. M. (1996) Sensitive, nonradioactive differential display method using chemiluminescent detection. Biotechniques 20, 342–346.

    PubMed  CAS  Google Scholar 

  62. Li, F., Barnathan, E. S., and Kariko, K. (1994) Rapid method for screening and cloning cDNAs generated in differential mRNA display: application of northern blot for affinity capturing of cDNAs. Nucleic Acids Res. 22, 1764–1765.

    PubMed  CAS  Google Scholar 

  63. Mathieu-Daude, F., Cheng, R., Welsh, J., and McClelland, M. (1996) Screening of differentially amplified cDNA products from RNA arbitrarily primed PCR fingerprints using single strand conformation polymorphism (SSCP) gels. Nucleic Acids Res. 24, 1504–1507.

    PubMed  CAS  Google Scholar 

  64. Zhao, S., Ooi, S. L., Yang, F. C., and Pardee, A. B. (1996) Three methods for identification of true positive cloned cDNA fragment in differential display. Biotechniques 20, 400–404.

    PubMed  CAS  Google Scholar 

  65. Miele, G., MacRae, L., McBride, D., Manson, J., and Clinton, M. (1998) Elimination of false positives generated through PCR re-amplification of differential display cDNA. Biotechniques 25, 138–144.

    PubMed  CAS  Google Scholar 

  66. Gromova, I., Gromov, P., and Celis, J. E. (1999) Identification of true differentially expressed mRNAs in a pair of human bladder transitional cell carcinomas using an improved differential display procedure. Electrophoresis 20, 241–248.

    PubMed  CAS  Google Scholar 

  67. Callard, D., Lescure, B., and Mazzolini, L. (1994) A method for the elimination of false positives generated by the mRNA differential display technique. Biotechniques 16, 1100–1103.

    Google Scholar 

  68. Shoham, N. G., Arad, T., Rosin-Abersfeld, R., Mashiah, P., Gazit, A., and Yaniv, A. (1996) Differential display assay and analysis. Biotechniques 20, 182–184.

    PubMed  CAS  Google Scholar 

  69. Liu, C. and Raghothama, K. G. (1996) Practical method for cloning cDNAs generated in an mRNA differential display. Biotechniques 20, 576–580.

    PubMed  CAS  Google Scholar 

  70. Wadhwa, R., Duncan, E., Kaul, S. C., and Reddel, R. R. (1996) An effective elimination of false positives isolated from differential display of mRNAs. Mol. Biotechnol. 6, 213–217.

    PubMed  CAS  Google Scholar 

  71. Bryant, Z., Subrahmanyan, L., Tworoger, M., et al. (1999) Characterization of differentially expressed genes in purified Drosophila follicle cells: toward a general strategy for cell type-specific developmental analysis. Proc. Natl. Acad. Sci. USA 96, 5559–5564.

    PubMed  CAS  Google Scholar 

  72. Wittwer, C.T., Herrmann, M.G., Moss, A.A., Rasmussen, R.P. (1997) Continuous fluorescence monitoring of rapid cycle DNA amplification. Biotechniques 22, 134–138.

    Google Scholar 

  73. Israeli, D., Tessler, E., Haupt, Y., et al. (1997) A novel p53-inducible gene, PAG608, encodes a nuclear zinc finger protein whose overexpression promotes apoptosis. EMBO J. 16, 4384–4392.

    PubMed  CAS  Google Scholar 

  74. Lehar, S. M., Nacht, M., Jacks, T., Vater, C. A., Chittenden, T., and Guild, B. C. (1996) Identification and cloning of EI24, a gene induced by p53 in etoposide-treated cells. Oncogene 12, 1181–1187.

    PubMed  CAS  Google Scholar 

  75. Gu, Z., Flemington, C., Chittenden, T., and Zambetti, G. P. (2000) ei24, a p53 response gene involved in growth suppression and apoptosis. Mol. Cell. Biol. 20, 233–241.

    PubMed  CAS  Google Scholar 

  76. Lin, Y., Ma, W., and Benchimol, S. (2000) Pidd a new death-domain-containing protein, is induced by p53 and promotes apoptosis. Nature Genet. 26, 122–127.

    PubMed  CAS  Google Scholar 

  77. Okamura, S., Arakawa, H., Tanaka, T., et al. (2001) p53DINP1, a p53-inducible gene, regulates p53-dependent apoptosis. Mol. Cell. 8, 85–94.

    PubMed  CAS  Google Scholar 

  78. Lo, P. K., Chen, J. Y., Lo, W. C., et al. (1999) Identification of a novel mouse p53 target gene DDA3. Oncogene 18, 7765–7774.

    PubMed  CAS  Google Scholar 

  79. Oda, E., Ohki, R., Murasawa, H., et al. (2000) Noxa, a BH3-only member of the Bcl-2 family and candidate mediator of p53-induced apoptosis. Science 288, 1053–1058.

    PubMed  CAS  Google Scholar 

  80. Leng, R. P., Lin, Y., Ma, W., et al. (2003) Pirh2, a p53-induced ubiquitin-protein ligase, promotes p53 degradation. Cell 112, 779–791.

    PubMed  CAS  Google Scholar 

  81. Zhang, R., Tan, Z., and Liang, P. (2000) Identification of a novel ligand-receptor pair constitutively activated by ras oncogenes. J. Biol. Chem. 275, 24,436–24,443.

    PubMed  CAS  Google Scholar 

  82. Wang, M., Tan, Z., Zhang, R., Kotenko, S. V., and Liang, P. (2002) Interleukin 24 (MDA-7/MOB-5) signals through two heterodimeric receptors, IL-22R1/IL-20R2 and IL-20R1/IL-20R2. J. Biol. Chem. 277, 7341–7347.

    PubMed  CAS  Google Scholar 

  83. Zhu, Y., Carroll, M., Papa, F. R., Hochstrasser, M., and D’Andrea, A. D. (1996) DUB-1, a deubiquitinating enzyme with growth-suppressing activity. Proc. Natl. Acad. Sci. USA 93, 3275–3279.

    PubMed  CAS  Google Scholar 

  84. Sakuma, S., Saya, H., Ijichi, A., and Tofilon, P. J. (1995) Radiation induction of the receptor tyrosine kinase gene Ptk-3 in normal rat astrocytes. Radiat. Res. 143, 1–7.

    PubMed  CAS  Google Scholar 

  85. Liu. J., Liu, H., Zhang, X., Gao, P., Wang, J., and Hu, Z., (2002) Identification and characterization of P15RS, a novel P15(INK4b) related gene on G1/S progression. Biochem. Biophys. Res. Commun. 299, 880–885.

    PubMed  CAS  Google Scholar 

  86. Nickenig, G., Baudler, S., Muller, C., Werner, C., et al. (2002) Redox-sensitive vascular smooth muscle cell proliferation is mediated by GKLF and Id3 in vitro and in vivo. FASEB J. 16, 1077–1086.

    PubMed  CAS  Google Scholar 

  87. Lee, D. W., Zhang, K., Ning, Z. Q., et al. (2000) Proliferation-associated SNF2-like gene (PASG): a SNF2 family member altered in leukemia. Cancer Res. 60, 3612–3622.

    PubMed  CAS  Google Scholar 

  88. Wang, S., Nakashima, S., Sakai, H., Numata, O., Fujiu, K., and Nozawa, Y. (1998) Molecular cloning and cell-cycle-dependent expression of a novel NIMA (never-in-mitosis in Aspergillus nidulans)-related protein kinase (TpNrk) in Tetrahymena cells. Biochem. J. 334(Pt. 1), 197–203.

    PubMed  CAS  Google Scholar 

  89. Poirier, G. M., Anderson, G., Huvar, A., et al. (1999) Immune-associated nucleotide-1 (IAN-1) is a thymic selection marker and defines a novel gene family conserved in plants. J. Immunol. 163, 4960–4969.

    PubMed  CAS  Google Scholar 

  90. Azzoni, L., Kanakaraj, P., Zatsepina, O., and Perussia, B. (1996) IL-12-induced activation of NK and T cells occurs in the absence of immediate-early activation gene expression. J. Immunol. 157, 3235–3241.

    PubMed  CAS  Google Scholar 

  91. Ruegg, C. L., Wu, H. Y., Fagnoni, F. F., Engleman, E. G., and Laus, R. (1996) B4B, a novel growth-arrest gene, is expressed by a subset of progenitor/pre-B lymphocytes negative for cytoplasmic mu-chain. J. Immunol. 157, 72–80.

    PubMed  CAS  Google Scholar 

  92. Ishaq, M., Zhang, Y. M., and Natarajan, V. (1998) Activation-induced down-regulation of retinoid receptor RXRalpha expression in human T lymphocytes. Role of cell cycle regulation. J. Biol. Chem. 273, 21,210–21,216.

    PubMed  CAS  Google Scholar 

  93. Sun, H. B., Zhu, Y. X., Yin, T., Sledge, G., and Yang, Y. C. (1998) MRG1, the product of a melanocyte-specific gene related gene, is a cytokine-inducible transcription factor with transformation activity. Proc. Natl. Acad. Sci. USA 95, 13,555–13,560.

    PubMed  CAS  Google Scholar 

  94. Nocentini, G., Giunchi, L., Ronchetti, S., et al. (1997) A new member of the tumor necrosis factor/nerve growth factor receptor family inhibits T cell receptor-induced apoptosis. Proc. Natl. Acad. Sci. USA 94, 62116–6221.

    Google Scholar 

  95. Babu, J. S., Sun, T., Xu, L., and Datta, S. K. (2002) B cell stimulatory effects of alpha-enolase that is differentially expressed in NZB mouse B cells. Clin. Immunol. 104, 293–304.

    PubMed  CAS  Google Scholar 

  96. Sawitzki, B., Lehmann, M., Vogt, K., et al. (2002) Bag-1 up-regulation in anti-CD4 mAb treated allo-activated T cells confers resistance to apoptosis. Eur. J. Immunol. 32, 800–809.

    PubMed  CAS  Google Scholar 

  97. Amson, R. B., Nemani, M., Roperch, J. P., et al. (1996) Isolation of 10 differentially expressed cDNAs in p53-induced apoptosis: activation of the vertebrate homologue of the drosophila seven in absentia gene. Proc. Natl. Acad. Sci. USA 93, 3953–3957.

    PubMed  CAS  Google Scholar 

  98. Semizarov, D., Glesne, D., Laouar, A., Schiebel, K., and Huberman, E. (1998) A lineage-specific protein kinase crucial for myeloid maturation. Proc. Natl. Acad. Sci. USA 95, 15,412–15,417.

    PubMed  CAS  Google Scholar 

  99. Garcia-Domingo, D., Leonardo, E., Grandien, A., et al. (1999) DIO-1 is a gene involved in onset of apoptosis in vitro, whose misexpression disrupts limb development. Proc. Natl. Acad. Sci. USA 96, 7992–7997.

    PubMed  CAS  Google Scholar 

  100. Jin, F. Y., Nathan, C., Radzioch, D., and Ding, A. (1997) Secretory leukocyte protease inhibitor: a macrophage product induced by and antagonistic to bacterial lipopolysaccharide. Cell 88, 417–426.

    PubMed  CAS  Google Scholar 

  101. Blaser, C., Kaufmann, M., Muller, C., et al. (1998) Beta-galactoside-binding protein secreted by activated T cells inhibits antigen-induced proliferation of T cells. Eur. J. Immunol. 28, 2311–2319.

    PubMed  CAS  Google Scholar 

  102. Xu, D., Chan, W. L., Leung, B. P., et al. (1998) Selective expression of a stable cell surface molecule on type 2 but not type 1 helper T cells. J. Exp. Med. 187, 787–794.

    PubMed  CAS  Google Scholar 

  103. Ali, M., Markham, A. F., and Isaacs, J. D. (2001) Application of differential display to immunological research. J. Immunol. Methods 250, 29–43.

    PubMed  CAS  Google Scholar 

  104. Cole, K. A., Krizman, D. B., and Emmert-Buck, M. R. (1999) The genetics of cancer-a 3D model. Nature Genet. 21, 38–41.

    PubMed  CAS  Google Scholar 

  105. Radford, D. M., Fair, K., Thompson, A.M., et al. (1993) Allelic loss on a chromosome 17 in ductal carcinoma in situ of the breast. Cancer Res. 53, 2947–2949.

    PubMed  CAS  Google Scholar 

  106. Shibata, D., Hawes, D., Li, Z. H., Hernandez, A. M., Spruck, C. H., and Nichols, P. W. (1992) Specific genetic analysis of microscopic tissue after selective ultraviolet radiation fractionation and the polymerase chain reaction. Am. J. Pathol. 141, 539–543.

    PubMed  CAS  Google Scholar 

  107. Emmert-Buck, M. R., Roth, M. J., Zhuang, Z., et al. (1994) Increased gelatinase A (MMP-2) and cathepsin B activity in invasive tumor regions of human colon cancer samples. Am. J. Pathol. 145, 1285–1290.

    PubMed  CAS  Google Scholar 

  108. Zhuang, Z., Roth, M. J., Emmert-Buck, M. R., Lubensky, I. A., Liotta, L. A., and Solomon, D. (1994) Detection of the von Hippel-Lindau gene deletion in cytologic specimens using microdissection and the polymerase chain reaction. Acta Cytol. 38, 671–675.

    PubMed  CAS  Google Scholar 

  109. Emmert-Buck, M. R., Bonner, R. F., Smith, P. D., et al. (1996) Laser capture microdissection. Science 274, 998–1001.

    PubMed  CAS  Google Scholar 

  110. Fend, F., Quintanilla-Martinez, L., Kumar, S., et al. (1999) Composite low grade B-cell lymphomas with two immunophenotypically distinct cell populations are true biclonal lymphomas. A molecular analysis using laser capture microdissection. Am. J. Pathol. 154, 1857–1866.

    PubMed  CAS  Google Scholar 

  111. Schmidt-Kittler, O., Ragg, T., Daskalakis, A., et al. (2003) From latent disseminated cells to overt metastasis: genetic analysis of systemic breast cancer progression. Proc. Natl. Acad. Sci. USA 100, 7737–7742.

    PubMed  CAS  Google Scholar 

  112. Murakami, H., Liotta, L., and Star, R. A. (2000) IF-LCM: laser capture microdissection of immunofluorescently defined cells for mRNA analysis rapid communication. Kidney Int. 58, 1346–1353.

    PubMed  CAS  Google Scholar 

  113. Jin, L., Thompson, C. A., Qian, X., Kuecker, S. J., Kulig, E., and Lloyd, R. V. (1999) Analysis of anterior pituitary hormone mRNA expression in immunophenotypically characterized single cells after laser capture microdissection. Lab. Invest. 79, 511–512.

    PubMed  CAS  Google Scholar 

  114. Lindeman, N., Waltregny, D., Signoretti, S., and Loda, M. (2002) Gene transcript quantitation by real-time RT-PCR in cells selected by immunohistochemistry-laser capture microdissection. Diagn. Mol. Pathol. 11, 187–192.

    PubMed  Google Scholar 

  115. Ghadersohi, A. and Sood, A. K. (2001) Prostate epithelium-derived Ets transcription factor mRNA is overexpressed in human breast tumors and is a candidate breast tumor marker and a breast tumor antigen. Clin. Cancer Res. 7, 2731–2738.

    PubMed  CAS  Google Scholar 

  116. Mellick, A. S., Day, C. J., Weinstein, S. R., Griffiths, L. R., and Morrison, N. A. (2002) Differential gene expression in breast cancer cell lines and stroma-tumor differences in microdissected breast cancer biopsies revealed by display array analysis. Int. J. Cancer. 100, 172–180.

    PubMed  CAS  Google Scholar 

  117. Chen, L.C., Manjeshwar, S., Lu, Y., et al. (1998) The human homologue for the Caenorhabditis elegans cul-4 gene is amplified and overexpressed in primary breast cancers. Cancer Res. 58, 3677–3683.

    PubMed  CAS  Google Scholar 

  118. Nielsen, H. L., Ronnov-Jessen, L., Villadsen, R., and Petersen, O. W. (2002) Identification of EPSTI1, a novel gene induced by epithelial-stromal interaction in human breast cancer. Genomics 79, 703–710.

    PubMed  CAS  Google Scholar 

  119. Wang, G. S., Wang, M. W., Wu, B. Y., You, W. D., and Yang, X. Y. (2003) A novel gene, GCRG224, is differentially expressed in human gastric mucosa. World J. Gastroenterol. 9, 30–34.

    PubMed  CAS  Google Scholar 

  120. Tran, Y. K., Bogler, O., Gorse, K. M., Wieland, I., Green, M. R., and Newsham, I. F. (1999) A novel member of the NF2/ERM/4.1 superfamily with growth suppressing properties in lung cancer. Cancer Res. 59, 35–43.

    PubMed  CAS  Google Scholar 

  121. Manda, R., Kohno, T., Niki, T., et al. (2000) Differential expression of the LAMB3 and LAMC2 genes between small cell and non-small cell lung carcinomas. Biochem. Biophys. Res. Commun. 275, 440–445.

    PubMed  CAS  Google Scholar 

  122. Yu, L., Hui-chen, F., Chen, Y., et al. (1999) Differential expression of RAB5A in human lung adenocarcinoma cells with different metastasis potential. Clin. Exp. Metastas. 17, 213–219.

    CAS  Google Scholar 

  123. Hsu, N. Y., Ho, H. C., Chow, K. C., et al. (2001) Overexpression of dihydrodiol dehydrogenase as a prognostic marker of non-small cell lung cancer. Cancer Res. 61, 2727–2731.

    PubMed  CAS  Google Scholar 

  124. Neef, R., Kuske, M. A., Prols, E., and Johnson, J. P. (2002) Identification of the human PHLDA1/TDAG51 gene: down-regulation in metastatic melanoma contributes to apoptosis resistance and growth deregulation. Cancer Res. 62, 5920–5929.

    PubMed  CAS  Google Scholar 

  125. Cole, K. A., Chuaqui, R. F., Katz, K., et al. (1998) cDNA sequencing and analysis of POV1 (PB39): a novel gene up-regulated in prostate cancer. Genomics 51, 282–287.

    PubMed  CAS  Google Scholar 

  126. King, H. C. and Sinha, A. A. (2001) Gene expression profile analysis by DNA microarrays: promise and pitfalls. JAMA 286, 2280–2288.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Gromova, I., Gromov, P., Celis, J.E. (2005). Differential Display. In: Walker, J.M., Rapley, R. (eds) Medical Biomethods Handbook. Springer Protocols Handbooks. Humana Press. https://doi.org/10.1385/1-59259-870-6:487

Download citation

  • DOI: https://doi.org/10.1385/1-59259-870-6:487

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-288-9

  • Online ISBN: 978-1-59259-870-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics