Skip to main content

Quantitative PCR

  • Protocol
  • 2262 Accesses

Part of the book series: Springer Protocols Handbooks ((SPH))

Abstract

Commonly used methods to quantify RNA and DNA include Northern and Southern blotting, RNase protection assays, and in situ hybridization (see Chapter 29). Because these methods analyze nonamplified RNA or DNA, they are of low sensitivity and require relatively large amounts of nucleic acid. Another method, thousands of times more sensitive than these traditional techniques, combines reverse transcription (RT) and the polymerase chain reaction (PCR). Although RT-PCR is an exquisitely sensitive and specific technique, obtaining quantitative data presents a difficult challenge (14).

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Wang, A. M., Doyle, M. V., and Mark, D. F. (1989) Quantitation of mRNA by the polymerase chain reaction. Proc. Natl. Acad. Sci. USA 86, 9717–9721.

    Article  PubMed  CAS  Google Scholar 

  2. Foley, K. P., Leonard, M. W., and Engel, J. D. (1993) Quantitation of RNA using the polymerase chain reaction. Trends Genet. 9, 380–385.

    Article  PubMed  CAS  Google Scholar 

  3. Eidne, K.A. (1991) The polymerase reaction and its uses in endocrinology. Trends Endocr. Med. 2, 69–175.

    Google Scholar 

  4. Becker-Andre, M. and Hahlbrock, K. (1989) Absolute mRNA quantification using the polymerase chain reaction (PCR). A novel approach by a PCR aided transcript titration assay (PATTY). Nucleic Acids Res. 17, 9437–9446.

    Article  PubMed  CAS  Google Scholar 

  5. McDowell, D. G., Burns, N. A., and Parkes, H. C. (1998) Localised sequence regions possessing high melting temperatures prevent the amplification of a DNA mimic in competitive PCR. Nucleic Acids Res. 26, 3340–3347.

    Article  PubMed  CAS  Google Scholar 

  6. Wiesner, R. J. (1992) Direct quantification of picomolar concentrations of mRNAs by mathematical analysis of a reverse transcription/exponential polymerase chain reaction assay. Nucleic Acids Res. 20, 5863–5864.

    Article  PubMed  CAS  Google Scholar 

  7. Freeman, W. M., Walker, S. J., and Vrana, K. E. (1999) Quantitative RT-PCR: pitfalls and potential. Biotechniques 26, 112–122, 124-125.

    PubMed  CAS  Google Scholar 

  8. Kainz, P. (2000) The PCR plateau phase-towards an understanding of its limitations. Biochim. Biophys. Acta 1494, 23–27.

    PubMed  CAS  Google Scholar 

  9. Ririe, K. M., Rasmussen, R. P., and Wittwer, C. T. (1997) Product differentiation by analysis of DNA melting curves during the polymerase chain reaction. Anal. Biochem. 245, 154–160.

    Article  PubMed  CAS  Google Scholar 

  10. Schneeberger, C., Speiser, P., Kury, F., and Zeillinger, R. (1995) Quantitative detection of reverse transcriptase-PCR products by means of a novel and sensitive DNA stain. PCR Methods Appl. 4, 234–238.

    PubMed  CAS  Google Scholar 

  11. Noonan, K. E., Beck, C., Holzmayer, T. A., et al. (1990) Quantitative analysis of MDR1 (multidrug resistance) gene expression in human tumors by polymerase chain reaction. Proc. Natl. Acad. Sci. USA 87, 7160–7164.

    Article  PubMed  CAS  Google Scholar 

  12. Murphy, L. D., Herzog, C. E., Rudick, J. B., Fojo, A.T., and Bates, S. E. (1990) Use of the polymerase chain reaction in the quantitation of mdr-1 gene expression. Biochemistry 29, 10,351–10,356.

    Article  PubMed  CAS  Google Scholar 

  13. Kinoshita, T., Imamura, J., Nagai, H., and Shimotohno, K. (1992) Quantification of gene expression over a wide range by the polymerase chain reaction. Anal. Biochem. 206, 231–235.

    Article  PubMed  CAS  Google Scholar 

  14. Khan, I., Tabb, T., Garfield, R. E., and Grover, A. K. (1992) Polymerase chain reaction assay of mRNA using 28S rRNA as internal standard. Neurosci. Lett. 147, 114–117.

    Article  PubMed  CAS  Google Scholar 

  15. Siebert, P. D. and Fukuda, M. (1985) Induction of cytoskeletal vimentin and actin gene expression by a tumor-promoting phorbol ester in the human leukemic cell line K562. J. Biol. Chem. 260, 3868–3874.

    PubMed  CAS  Google Scholar 

  16. Shinohara, M. L., Loros, J. J., and Dunlap, J. C. (1998) Glyceraldehyde-3-phosphate dehydrogenase is regulated on a daily basis by the circadian clock. J. Biol. Chem. 273, 446–452.

    Article  PubMed  CAS  Google Scholar 

  17. Siebert, P. D. and Larrick, J.W. (1992) Competitive PCR. Nature 359, 557–558.

    Article  PubMed  CAS  Google Scholar 

  18. Uberla, K., Platzer, C., Diamantstein, T., and Blankenstein, T. (1991) Generation of competitor DNA fragments for quantitative PCR. PCR Methods Applic. 1, 136–139.

    CAS  Google Scholar 

  19. Morrison, T. B., Weis, J. J., and Wittwer, C. T. (1998) Quantification of low-copy transcripts by continuous SYBR Green I monitoring during amplification. Biotechniques 24, 954–958, 960, 962.

    PubMed  CAS  Google Scholar 

  20. Holland, P. M., Abramson, R. D., Watson, R., and Gelfand, D. H. (1991) Detection of specific polymerase chain reaction product by utilizing the 5′→3′-exonuclease activity of Thermus aquaticus DNA polymerase. Proc. Natl. Acad. Sci. USA 88, 7276–7280.

    Article  PubMed  CAS  Google Scholar 

  21. Tombline, G., Bellizzi, D., and Sgaramella, V. (1996) Heterogeneity of primer extension products in asymmetric PCR is due both to cleavage by a structure-specific exo/endonuclease activity of DNA polymerases and to premature stops. Proc. Natl. Acad. Sci. USA 93, 2724–2728.

    Article  PubMed  CAS  Google Scholar 

  22. Tyagi, S. and Kramer, F. R. (1996) Molecular beacons: probes that fluoresce upon hybridization. Nature Biotechnol. 14, 303–308.

    Article  CAS  Google Scholar 

  23. Whitcombe, D., Theaker, J., Guy, S. P., Brown, T., and Little, S. (1999) Detection of PCR products using self-probing amplicons and fluorescence. Nature Biotechnol. 17, 804–807.

    Article  CAS  Google Scholar 

  24. Lowe, B., Avila, H. A., Bloom, F. R., Gleeson, M., and Kusser, W. (2003) Quantitation of gene expression in neural precursors by reverse-transcription polymerase chain reaction using selfquenched, fluorogenic primers. Anal. Biochem. 315, 95–105.

    Article  PubMed  CAS  Google Scholar 

  25. Thelwell, N., Millington, S., Solinas, A., Booth, J., and Brown, T. (2000) Mode of action and application of Scorpion primers to mutation detection. Nucleic Acids Res. 28, 3752–3761.

    Article  PubMed  CAS  Google Scholar 

  26. Nazarenko, I., Lowe, B., Darfler, M., Ikonomi, P., Schuster, D., and Rashtchian, A. (2002) Multiplex quantitative PCR using self-quenched primers labeled with a single fluorophore. Nucleic Acids Res. 30, e37.

    Article  PubMed  Google Scholar 

  27. Nazarenko, I., Pires, R., Lowe, B., Obaidy, M., and Rashtchian, A. (2002) Effect of primary and secondary structure of oligodeoxyribonucleotides on the fluorescent properties of conjugated dyes. Nucleic Acids Res. 30, 2089–2195.

    Article  PubMed  CAS  Google Scholar 

  28. Peirson, S. N., Butler, J. N., and Foster, R. G. (2003) Experimental validation of novel and conventional approaches to quantitative real-time PCR data analysis. Nucleic Acids Res. 31, e73.

    Article  PubMed  Google Scholar 

  29. Wilhelm, J., Pingoud, A., and Hahn, M. (2003) Validation of an algorithm for automatic quantification of nucleic acid copy numbers by real-time polymerase chain reaction. Anal. Biochem. 317, 218–225.

    Article  PubMed  CAS  Google Scholar 

  30. Bustin, S. A. (2000) Absolute quantification of mRNA using real-time reverse transcription polymerase chain reaction assays. J. Mol. Endocrinol. 25, 169–193.

    Article  PubMed  CAS  Google Scholar 

  31. Bustin, S. A. (2002) Quantification of mRNA using real-time reverse transcription PCR (RT-PCR): trends and problems. J. Mol. Endocrinol. 29, 23–39.

    Article  PubMed  CAS  Google Scholar 

  32. Vandesompele, J., De Preter, K., Pattyn, F., et al. (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 3, RESEARCH0034.

    Google Scholar 

  33. Goidin, D., Mamessier, A., Staquet, M. J., Schmitt, D., and Berthier-Vergnes, O. (2001) Ribosomal 18S RNA prevails over glyceraldehyde-3-phosphate dehydrogenase and beta-actin genes as internal standard for quantitative comparison of mRNA levels in invasive and noninvasive human melanoma cell subpopulations. Anal. Biochem. 295, 17–21.

    Article  PubMed  CAS  Google Scholar 

  34. Schmittgen T. D. and Zakrajsek, B.A. (2000) Effect of experimental treatment on housekeeping gene expression: validation by real-time, quantitative RT-PCR. J. Biochem. Biophys. Methods 46, 69–81.

    Article  PubMed  CAS  Google Scholar 

  35. Solanas, M., Moral, R., and Escrich, E. (2001) Unsuitability of using ribosomal RNA as loading control for Northern blot analyses related to the imbalance between messenger and ribosomal RNA content in rat mammary tumors. Anal. Biochem. 288, 99–102.

    Article  PubMed  CAS  Google Scholar 

  36. Jones, L. J., Yue, S. T., Cheung, C. Y., and Singer, V. L. (1998) RNA quantitation by fluorescencebased solution assay: RiboGreen reagent characterization. Anal. Biochem. 265, 368–374.

    Article  PubMed  CAS  Google Scholar 

  37. Gundry, C. N., Bernard, P. S., Herrmann, M. G., Reed, G. H., and Wittwer, C. T. (1999) Rapid F508del and F508C assay using fluorescent hybridization probes. Genet. Test. 3, 365–370.

    PubMed  CAS  Google Scholar 

  38. von Ahsen, N., Oellerich, M., and Schutz, E. (2000) Use of two reporter dyes without interference in a single-tube rapid-cycle PCR: alpha(1)-antitrypsin genotyping by multiplex real-time fluorescence PCR with the LightCycler. Clin. Chem. 46, 156–161.

    Google Scholar 

  39. Nauck, M., Marz, W., and Wieland, H. (2000) Evaluation of the Roche diagnostics LightCycler-Factor V Leiden Mutation Detection Kit and the LightCycler-Prothrombin Mutation Detection Kit. Clin. Biochem. 33, 213–216.

    Article  PubMed  CAS  Google Scholar 

  40. Nauck, M., Hoffmann, M. M., Wieland, H., and Marz, W. (2000) Evaluation of the apo E genotyping kit on the LightCycler. Clin. Chem. 46, 722–724.

    PubMed  CAS  Google Scholar 

  41. Mangasser-Stephan, K., Tag, C., Reiser, A. and Gressner, A.M. (1999) Rapid genotyping of hemochromatosis gene mutations on the LightCycler with fluorescent hybridization probes. Clin. Chem. 45, 1875–1878.

    PubMed  CAS  Google Scholar 

  42. Fujii, K., Matsubara, Y., Akanuma, J., et al. (2000) Mutation detection by TaqMan-allele specific amplification: application to molecular diagnosis of glycogen storage disease type Ia and mediumchain acyl-CoA dehydrogenase deficiency. Hum. Mutat. 15, 189–196.

    Article  PubMed  CAS  Google Scholar 

  43. Hiratsuka, M., Agatsuma, Y., Omori, F., et al. (2000) High throughput detection of drug-metabolizing enzyme polymorphisms by allele-specific fluorogenic 5' nuclease chain reaction assay. Biol. Pharm. Bull. 23, 1131–1135.

    PubMed  CAS  Google Scholar 

  44. Bon, M. A., van Oeveren-Dybicz, A., and van den Bergh, F. A. (2000) Genotyping of HLA-B27 by real-time PCR without hybridization probes. Clin. Chem. 46, 1000–1002.

    PubMed  CAS  Google Scholar 

  45. Wittwer, C. T., Reed, G. H., Gundry, C. N., Vandersteen, J. G., and Pryor, R. J. (2003) High-resolution genotyping by amplicon melting analysis using LCGreen. Clin. Chem. 49, 853–860.

    Article  PubMed  CAS  Google Scholar 

  46. Gundry, C. N., Vandersteen, J. G., Reed, G. H., Pryor, R. J., Chen, J., and Wittwer, C.T. (2003) Amplicon melting analysis with labeled primers: a closed-tube method for differentiating homozygotes and heterozygotes. Clin. Chem. 49, 396–406.

    Article  PubMed  CAS  Google Scholar 

  47. Schutten, M. and Niesters H. G. (2001) Clinical utility of viral quantification as a tool for disease monitoring. Expert Rev. Mol. Diagn. 1, 53–62.

    Article  Google Scholar 

  48. Niesters, H. G. (2002) Clinical virology in real time. J. Clin. Virol. 25(Suppl 3), S3–12.

    Article  PubMed  CAS  Google Scholar 

  49. Mackay, I. M., Arden, K. E., and Nitsche, A. (2002) Real-time PCR in virology. Nucleic Acids Res. 30, 1292–1305.

    Article  PubMed  CAS  Google Scholar 

  50. Carpenter, C. C., Cooper, D. A., Fischl, M. A., et al. (2000) Antiretroviral therapy in adults: updated recommendations of the International AIDS Society-USA Panel. JAMA 283, 381–390.

    Article  PubMed  CAS  Google Scholar 

  51. Kelley, V. A. and Caliendo, A. M. (2001) Successful testing protocols in virology. Clin. Chem. 47, 1559–1562.

    PubMed  CAS  Google Scholar 

  52. Berger, A. and Preiser, W. (2002) Viral genome quantification as a tool for improving patient management: the example of HIV, HBV, HCV and CMV. J. Antimicrob. Chemother. 49, 713–721.

    Article  PubMed  CAS  Google Scholar 

  53. Schweiger, B., Zadow, I., Heckler, R., Timm, H., and Pauli, G. (2000) Application of a fluorogenic PCR assay for typing and subtyping of influenza viruses in respiratory samples. J. Clin. Microbiol. 38, 1552–1558.

    PubMed  CAS  Google Scholar 

  54. Rantakokko-Jalava, K. and Jalava, J. (2001) Development of conventional and real-time PCR assays for detection of Legionella DNA in respiratory specimens. J. Clin. Microbiol. 39, 2904–2910.

    Article  PubMed  CAS  Google Scholar 

  55. Elsayed, S., Chow, B. L., Hamilton, N. L, Gregson, D. B., Pitout, J. D., and Church, D. L. (2003) Development and validation of a molecular beacon probe-based real-time polymerase chain reaction assay for rapid detection of methicillin resistance in Staphylococcus aureus. Arch. Pathol. Lab. Med. 127, 845–849.

    CAS  Google Scholar 

  56. Palladino, S., Kay, I. D., Flexman, J. P., et al. (2003) Rapid detection of vanA and vanB genes directly from clinical specimens and enrichment broths by real-time multiplex PCR assay. J. Clin. Microbiol. 41, 2483–2486.

    Article  PubMed  CAS  Google Scholar 

  57. White, P. L., Shetty, A., and Barnes, R. A. (2003) Detection of seven Candida species using the Light-Cycler system. J. Med. Microbiol. 52, 229–238.

    Article  PubMed  Google Scholar 

  58. Chen, S., Yee, A., Griffiths, M., et al. (1997) The evaluation of a fluorogenic polymerase chain reaction assay for the detection of Salmonella species in food commodities. Int. J. Food Microbiol. 35, 239–250.

    Article  PubMed  Google Scholar 

  59. Chen, W., Martinez, G., and Mulchandani, A. (2000) Molecular beacons: a real-time polymerase chain reaction assay for detecting Salmonella. Anal. Biochem. 280, 166–172.

    Article  CAS  Google Scholar 

  60. Bhagwat, A. A. (2003) Simultaneous detection of Escherichia coli O157:H7, Listeria monocytogenes and Salmonella strains by real-time PCR. Int. J. Food Microbiol. 84, 217–224.

    PubMed  CAS  Google Scholar 

  61. Jaeger, U. and Kainz, B. (2003) Monitoring minimal residual disease in AML: the right time for real time. Ann. Hematol. 82, 139–147.

    PubMed  CAS  Google Scholar 

  62. Estalilla, O. C., Medeiros, L. J., Manning, J. T. Jr., and Luthra, R. (2000) 5′→3′ exonuclease-based real-time PCR assays for detecting the t(14;18)(q32;21): a survey of 162 malignant lymphomas and reactive specimens. Mod. Pathol. 13, 661–666.

    Article  PubMed  CAS  Google Scholar 

  63. Barthe, C., Mahon, F. X., Gharbi, M. J., et al. (2001) Expression of interferon-alpha (IFN-alpha) receptor 2c at diagnosis is associated with cytogenetic response in IFN-alpha-treated chronic myeloid leukemia. Blood 97, 3568–3573.

    Article  PubMed  CAS  Google Scholar 

  64. Ginzinger, D. G. (2002) Gene quantification using real-time quantitative PCR: an emerging technology hits the mainstream. Exp. Hematol. 30, 503–512.

    Article  PubMed  CAS  Google Scholar 

  65. van der Velden, V. H., Hochhaus, A., Cazzaniga, G., Szczepanski, T., Gabert, J., and van Dongen, J. J. (2003) Detection of minimal residual disease in hematologic malignancies by real-time quantitative PCR: principles, approaches, and laboratory aspects. Leukemia 17, 1013–1034.

    Article  PubMed  Google Scholar 

  66. Mocellin, S., Rossi, C. R., Pilati, P., Nitti, D., and Marincola, F.M. (2003) Quantitative real-time PCR: a powerful ally in cancer research. Trends Mol. Med. 9, 189–195.

    Article  PubMed  CAS  Google Scholar 

  67. Bockmann, B., Grill, H. J., and Giesing, M. (2001) Molecular characterization of minimal residual cancer cells in patients with solid tumors. Biomol. Eng. 17, 95–111.

    Article  PubMed  CAS  Google Scholar 

  68. Ahmed, F. E. (2002) Detection of genetically modified organisms in foods. Trends Biotechnol. 20, 215–223.

    Article  PubMed  CAS  Google Scholar 

  69. Beachy, R. N. (1999) Facing fear of biotechnology. Science 285, 335.

    Article  PubMed  CAS  Google Scholar 

  70. Vaitilingom, M., Pijnenburg, H., Gendre, F., and Brignon, P. (1999) Real-time quantitative PCR detection of genetically modified Maximizer maize and Roundup Ready soybean in some representative foods. J. Agric. Food Chem. 47, 5261–5266.

    Article  PubMed  CAS  Google Scholar 

  71. Permingeat, H. R., Reggiardo, M. I., and Vallejos, R. H. (2002) Detection and quantification of transgenes in grains by multiplex and real-time PCR. J. Agric. Food Chem. 50, 4431–4436.

    Article  PubMed  CAS  Google Scholar 

  72. Broussard, L. A. (2001) Biological agents: weapons of warfare and bioterrorism. Mol. Diagn. 6, 323–333.

    PubMed  CAS  Google Scholar 

  73. Lee, M. A., Brightwell, G., Leslie, D., Bird, H., and Hamilton, A. (1999) Fluorescent detection techniques for real-time multiplex strand specific detection of Bacillus anthracis using rapid PCR. J. Appl. Microbiol. 87, 218–223.

    Article  PubMed  CAS  Google Scholar 

  74. Bell, C. A., Uhl, J. R., Hadfield, T. L., et al. (2002) Detection of Bacillus anthracis DNA by LightCycler PCR. J. Clin. Microbiol. 40, 2897–2902.

    Article  PubMed  CAS  Google Scholar 

  75. Ibrahim, M. S., Kulesh, D. A., Saleh, S. S., et al. (2003) Real-time PCR assay to detect smallpox virus. J. Clin. Microbiol. 41, 3835–3839.

    Article  CAS  Google Scholar 

  76. Higgins, J. A., Ezzell, J., Hinnebusch, B. J., Shipley, M., Henchal, E. A., and Ibrahim, M. S. (1998) 5′ nuclease PCR assay to detect Yersinia pestis. J. Clin. Microbiol. 36, 2284–2288.

    PubMed  CAS  Google Scholar 

  77. Higgins, J. A., Hubalek, Z., Halouzka, J., et al. (2000) Detection of Francisella tularensis in infected mammals and vectors using a probe-based polymerase chain reaction. Am. J. Trop. Med. Hyg. 62, 310–318.

    PubMed  CAS  Google Scholar 

  78. Drosten, C., Gottig, S., Schilling, S., et al. (2002) Rapid detection and quantification of RNA of Ebola and Marburg viruses, Lassa virus, Crimean-Congo hemorrhagic fever virus, Rift Valley fever virus, dengue virus, and yellow fever virus by real-time reverse transcription-PCR. J. Clin. Microbiol. 40, 2323–2330

    Article  PubMed  CAS  Google Scholar 

  79. Higgins, J. A., Nasarabadi, S., Karns, J. S., et al. (2003) A handheld real time thermal cycler for bacterial pathogen detection. Biosens. Bioelectron. 18, 1115–1123.

    Article  PubMed  CAS  Google Scholar 

  80. McCartney, H. A., Foster, S. J., Fraaije, B. A., and Ward, E. (2003) Molecular diagnostics for fungal plant pathogens. Pest Manag. Sci. 59, 129–142.

    Article  PubMed  CAS  Google Scholar 

  81. Wetton, J. H., Tsang, C. S., Roney, C. A., and Spriggs, A. C. (2002) An extremely sensitive speciesspecific ARMS PCR test for the presence of tiger bone DNA. Forensic Sci. Int. 126, 137–144.

    Article  PubMed  CAS  Google Scholar 

  82. Siva, S. C., Johnson, S. I., McCracken, S. A., and Morris, J. M. (2003) Evaluation of clinical usefulness of isolation of fetal DNA from the maternal circulation. Aust. NZ J. Obstet. Gyneacol. 43, 10–15

    Article  Google Scholar 

  83. Costa, J. M., Giovangrandi, Y., Ernault, P., et al. (2002) Fetal RHD genotyping in maternal serum during the first trimester of pregnancy. Br. J. Haematol. 119, 255–260.

    Article  PubMed  Google Scholar 

  84. Costa, J. M., Benachi, A., Olivi, M., Dumez, Y., Vidaud, M., and Gautier, E. (2003) Fetal expressed gene analysis in maternal blood: a new tool for noninvasive study of the fetus. Clin. Chem. 49, 981–983.

    Article  PubMed  CAS  Google Scholar 

  85. Lo, Y. M. D., Leung, T. N., Tein, M. S. C., et al. (1999) Quantitative abnormalities of fetal DNA in maternal serum in preeclampsia. Clin. Chem. 45, 184–188.

    PubMed  CAS  Google Scholar 

  86. Ng, E. K., Tsui, N. B., Lau, T. K., et al. (2003) mRNA of placental origin is readily detectable in maternal plasma. Proc. Natl. Acad. Sci. USA 100, 4748–4753.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Sugden, D. (2005). Quantitative PCR. In: Walker, J.M., Rapley, R. (eds) Medical Biomethods Handbook. Springer Protocols Handbooks. Humana Press. https://doi.org/10.1385/1-59259-870-6:327

Download citation

  • DOI: https://doi.org/10.1385/1-59259-870-6:327

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-288-9

  • Online ISBN: 978-1-59259-870-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics