Skip to main content

High-Throughput Technology

Green Fluorescent Protein to Monitor Cell Death

  • Protocol
Book cover Chemosensitivity

Part of the book series: Methods in Molecular Medicine™ ((MIMM,volume 110))

Abstract

Reliable assessment of cell death is now pivotal to many research programs aiming at generating new antitumor compounds or at screening cDNA libraries to identify genes with pro - or antiapoptotic functions. Such approaches need to rely on reproducible, easy handling, and rapid microplate-based cytotoxicity assays that are amenable to high-throughput screening technologies. We describe here a method for the direct measurement of cell death, based on the detection of a decrease in fluorescence observed following death induction in cells stably expressing enhanced green fluorescent protein (EGFP). Our data clearly show that such a decrease in EGFP fluorescence after cell death induction happens in various cell types, including those routinely used in anticancer drug screening (i.e., murine and human, lymphoid, fibroblastic, or epithelial cell lines). Moreover, the decrease in EGFP fluorescence is observed in cells induced to die by a variety of apoptosis-inducing agents, such as glucocorticoids (dexamethasone), DNAdamaging agents (etoposide, cisplatin), microtubule disorganizers (paclitaxel), protein kinase C inhibitors (staurosporine), or a caspase-independent apoptotic stimulus (CD45 crosslinking). A decrease in fluorescence can be assessed either by flow cytometry or with a fluorescence microplate reader. The kinetics and specificity of this EGFP-based assay were comparable with those of other conventional techniques used to detect cell death. This novel EGFP-based microplate assay combines sensitivity and rapidity and is amenable to high-throughput setups, making it an assay of choice for evaluation of cell cytotoxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nieminen, A. L., Gores, G. J., Bond, J. M., Imberti, R., Herman, B., and Lemasters, J. J. (1992) A novel cytotoxicity screening assay using a multiwell fluorescence scanner. Toxicol. Appl. Pharmacol. 115, 147–155.

    Article  PubMed  CAS  Google Scholar 

  2. Rat, P., Korwin-Zmijowska, C., Warnet, J. M., and Adolphe, M. (1994) New in vitro fluorimetric microtitration assays for toxicological screening of drugs. Cell. Biol. Toxicol. 10, 329–337.

    Article  PubMed  CAS  Google Scholar 

  3. Weisenthal, L. M., Marsden, J. A., Dill, P. L., and Macaluso, C. K. (1983) A novel dye exclusion method for testing in vitro chemosensitivity of human tumors. Cancer Res. 43, 749–757.

    PubMed  CAS  Google Scholar 

  4. Larsson, R., Nygren, P., Ekberg, M., and Slater, L. (1990) Chemotherapeutic drug sensitivity testing of human leukemia cells in vitro using a semiautomated fluorometric assay. Leukemia 4, 567–571.

    PubMed  CAS  Google Scholar 

  5. Mosmann, T. (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Methods 65, 55–63.

    Article  PubMed  CAS  Google Scholar 

  6. Pavlik, E. J., Flanigan, R. C., van Nagell, J. J., et al. (1985) Esterase activity, exclusion of propidium iodide, and proliferation in tumor cells exposed to anticancer agents: phenomena relevant to chemosensitivity determinations. Cancer Invest. 3, 413–426.

    Article  PubMed  CAS  Google Scholar 

  7. Scudiero, D. A., Shoemaker, R. H., Paull, K. D., Monks, A., Tierney, S., Nofziger, T. H., Currens, M. J., Seniff, D., and Boyd, M. R. (1988) Evaluation of a soluble tetrazolium/formazan assay for cell growth and drug sensitivity in culture using human and other tumor cell lines. Cancer Res. 48, 4827–4833.

    PubMed  CAS  Google Scholar 

  8. Skehan, P., Storeng, R., Scudiero, D., Monks, A., McMahon, J., Vistica, D., Warren, J. T., Bokesch, H., Kenney, S., and Boyd, M. R. (1990) New colorimetric cytotoxicity assay for anticancer-drug screening. J. Natl. Cancer Inst. 82, 1107–1112.

    Article  PubMed  CAS  Google Scholar 

  9. Korzeniewski, C. and Callewaert, D. M. (1983) An enzyme-release assay for natural cytotoxicity. J. Immunol. Methods 64, 313–320.

    Article  PubMed  CAS  Google Scholar 

  10. Douglas, R. S., Tarshis, A. D., Pletcher, C. H. Jr., Nowell, P. C., and Moore, J. S. (1995) A simplified method for the coordinate examination of apoptosis and surface phenotype of murine lymphocytes. J. Immunol. Methods 188, 219–228.

    Article  PubMed  CAS  Google Scholar 

  11. Darzynkiewicz, Z., Bruno, S., Del Bino, G., et al. (1992) Features of apoptotic cells measured by flow cytometry. Cytometry 13, 795–808.

    Article  PubMed  CAS  Google Scholar 

  12. Dive, C., Gregory, C. D., Phipps, D. J., Evans, D. L., Milner, A. E., and Wyllie, A. H. (1992) Analysis and discrimination of necrosis and apoptosis (programmed cell death) by multiparameter flow cytometry. Biochim. Biophys. Acta 1133, 275–285.

    Article  PubMed  CAS  Google Scholar 

  13. Gorczyca, W., Gong, J., and Darzynkiewicz, Z. (1993) Detection of DNA strand breaks in individual apoptotic cells by the in situ terminal deoxynucleotidyl transferase and nick translation assays. Cancer Res. 53, 1945–1951.

    PubMed  CAS  Google Scholar 

  14. Kain, S. R. (1999) Green fluorescent protein (GFP): applications in cell-based assays for drug discovery. Drug Discov. Today 4, 304–312.

    Article  PubMed  CAS  Google Scholar 

  15. Hoffman, R. M. (1999) Orthotopic metastatic mouse models for anticancer drug discovery and evaluation: a bridge to the clinic. Invest. New Drugs 17, 343–359.

    Article  PubMed  CAS  Google Scholar 

  16. Tsien, R. Y. (1998) The green fluorescent protein. Annu. Rev. Biochem. 67, 509–544.

    Article  PubMed  CAS  Google Scholar 

  17. Blom, B., Heemskerk, M. H., Verschuren, M. C., et al. (1999) Disruption of alpha beta but not of gamma delta T cell development by overexpression of the helixloop-helix protein Id3 in committed T cell progenitors. EMBO J. 18, 2793–2802.

    Article  PubMed  CAS  Google Scholar 

  18. Yang, T. T., Cheng, L., and Kain, S. R. (1996) Optimized codon usage and chromophore mutations provide enhanced sensitivity with the green fluorescent protein. Nucleic Acids Res. 24, 4592, 4593.

    Article  PubMed  CAS  Google Scholar 

  19. Haskins, K., Kubo, R., White, J., Pigeon, M., Kappler, J., and Marrack, P. (1983) The major histocompatibility complex-restricted antigen receptor on T cells. I. Isolation with a monoclonal antibody. J. Exp. Med. 157, 1149–1169.

    Article  PubMed  CAS  Google Scholar 

  20. Martin, S. J., Reutelingsperger, C. P., McGahon, A. J., et al. (1995) Early redistribution of plasma membrane phosphatidylserine is a general feature of apoptosis regardless of the initiating stimulus: inhibition by overexpression of Bcl-2 and Abl. J. Exp. Med. 182, 1545–1556.

    Article  PubMed  CAS  Google Scholar 

  21. Carter, W. O., Narayanan, P. K., and Robinson, J. P. (1994) Intracellular hydrogen peroxide and superoxide anion detection in endothelial cells. J. Leukoc. Biol. 55, 253–258.

    PubMed  CAS  Google Scholar 

  22. Steff, A. M., Fortin, M., Arguin, C., and Hug, P. (2001) Detection of a decrease in green fluorescent protein fluorescence for the monitoring of cell death: an assay amenable to high-throughput screening technologies. Cytometry 45, 237–243.

    Article  PubMed  CAS  Google Scholar 

  23. Strebel, A., Harr, T., Bachmann, F., Wernli, M., and Erb, P. (2001) Green fluorescent protein as a novel tool to measure apoptosis and necrosis. Cytometry 43, 126–133.

    Article  PubMed  CAS  Google Scholar 

  24. Matsuyama, S., Llopis, J., Deveraux, Q. L., Tsien, R. Y., and Reed, J. C. (2000) Changes in intramitochondrial and cytosolic pH: early events that modulate caspase activation during apoptosis. Nat. Cell. Biol. 2, 318–325.

    Article  PubMed  CAS  Google Scholar 

  25. Barry, M. A. and Eastman, A. (1992) Endonuclease activation during apoptosis: the role of cytosolic Ca2+ and pH. Biochem. Biophys. Res. Commun. 186, 782–789.

    Article  CAS  Google Scholar 

  26. Gottlieb, R. A., Nordberg, J., Skowronski, E., and Babior, B. M. (1996) Apoptosis induced in Jurkat cells by several agents is preceded by intracellular acidification. Proc. Natl. Acad. Sci. USA 93, 654–658.

    Article  PubMed  CAS  Google Scholar 

  27. Buttke, T. M. and Sandstrom, P. A. (1995) Redox regulation of programmed cell death in lymphocytes. Free Radic. Res. 22, 389–397.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Fortin, M., Steff, AM., Hugo, P. (2005). High-Throughput Technology. In: Blumenthal, R.D. (eds) Chemosensitivity. Methods in Molecular Medicine™, vol 110. Humana Press. https://doi.org/10.1385/1-59259-869-2:121

Download citation

  • DOI: https://doi.org/10.1385/1-59259-869-2:121

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-345-9

  • Online ISBN: 978-1-59259-869-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics