Skip to main content

Forensic DNA-Typing Technologies

A Review

  • Protocol

Part of the Methods in Molecular Biology book series (MIMB,volume 297)

Abstract

Since the discovery of deoxyribonucleic acid (DNA) profiling in 1985, forensic genetics has experienced a continuous technical revolution, both in the type of DNA markers used and in the methodologies or its detection. Highly informative and robust DNAtyping systems have been developed that have proven to be very effective in the individualization of biological material of human origin. DNA analysis has become the standard method in forensic genetics used by laboratories for the majority of forensic genetic expertise and especially in criminal forensic casework (stain analysis and hairs) and identification.

Key Words

  • DNA analysis
  • DNA profiling
  • DNA typing
  • forensic genetics

This is a preview of subscription content, access via your institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • DOI: 10.1385/1-59259-867-6:001
  • Chapter length: 11 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   129.00
Price excludes VAT (USA)
  • ISBN: 978-1-59259-867-0
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   169.99
Price excludes VAT (USA)
Hardcover Book
USD   169.99
Price excludes VAT (USA)

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Jeffreys, A. J., Wilson, V., and Thein, S. L. (1985) Hypervariable minisatellite regions in human DNA. Nature 314, 67–73.

    PubMed  CrossRef  CAS  Google Scholar 

  2. The International Human Genome Mapping Consortium. (2001) Nature 409, 934.

    CrossRef  Google Scholar 

  3. Litt, M., and Luty, J. A. (1989) A hypervariable minisatellite revealed by in vitro amplification of a dinucleotide repeat within the cardiac muscle actin gene. Am. J. Hum. Genet. 44, 397–401.

    PubMed  CAS  Google Scholar 

  4. Tautz, D. (1989) Hypervariability of simple sequences as a general source for polymorphic DNA markers. Nucleic Acid Res. 17, 6463–6471.

    PubMed  CrossRef  CAS  Google Scholar 

  5. Nakamura, Y., Leppert, M., O'Connell, P., Wolff, R., Holm, T., Culver, M., et al. (1987) Variable number of tandem repeats (VNTR) markers for human gene mapping. Science 235, 1616–1622.

    PubMed  CrossRef  CAS  Google Scholar 

  6. Beckman J. S., and Weber, J. L. (1992) Survey of human and rat microsatellites. Genomics 12, 627–631.

    PubMed  CrossRef  CAS  Google Scholar 

  7. Jeffreys, A. J., Tamaki, K., MacLeod, A., Monckton, D. G., Neil, D. L., and Armour, J. A.L. (1994) Complex gene conversion events in germline mutation at human minisatellites. Nat. Genet. 6, 136–145.

    PubMed  CrossRef  CAS  Google Scholar 

  8. Di Rienzo, A., Peterson, A. C., Garza, J. C., Valdes, A. M., Slatkin, M., and Freimer, N. B. (1994) Mutational processes of simple-sequence repeat loci in human populations. Proc. Natl. Acad. Sci. USA 91, 3166–3170.

    PubMed  CrossRef  Google Scholar 

  9. Southern, E. M. (1975) Detection of specific sequences among DNA fragments separated by gel electrophoresis. J. Mol. Biol. 98, 503–517.

    PubMed  CrossRef  CAS  Google Scholar 

  10. Mullis, K., and Faloona, F. (1987) Specific synthesis of DNA in vitro via polymerase-catalyzed chain reaction, in Methods in Enzymology (Wu, R., ed.), Academic Press, New York, pp. 335–350.

    Google Scholar 

  11. Kleppe, K., Ohstuka, E., Kleppe, R., Molineux, L., and Khorana, H. G. (1971) Studies on polynucleotides. XCVI. Repair replications of short synthetic DNA’s as catalyzed by DNA polymerases. J. Mol. Biol. 56, 341–361.

    PubMed  CrossRef  CAS  Google Scholar 

  12. Hagelberg, E., Sykes, B., and Hedges, R. (1989) Ancient bone DNA amplified. Nature 342, 485.

    PubMed  CrossRef  CAS  Google Scholar 

  13. Alvarez-García, A., Muñoz, I., Pestoni, C., Lareu, M. V., Rodríguez-Calvo, M. S., and Carracedo, A. (1996) Effect of environmental factors on PCR-DNA analysis from dental pulp. Int. J. Legal Med. 109, 125–129.

    PubMed  CrossRef  Google Scholar 

  14. Conner, B. J., Reyes, A. A., Morin, C., Itakura, K., Teplitz, R. L., and Wallace, R. B. (1983) Detection of sickle cell beta S-globin allele by hybridization with synthetic oligonucleotides. Proc. Natl. Acad. Sci. USA 80, 278–282.

    PubMed  CrossRef  CAS  Google Scholar 

  15. Saiki, R., Bugawan, T. L., Horn, T. G., Mullis, K. B., and Erlich, H. A. (1986) Analysis of enzymatically amplified beta-globin and HLA-DQ alpha DNA with allele-specific oligonucleotide probes. Nature 324, 163.

    PubMed  CrossRef  CAS  Google Scholar 

  16. Saiki, R. K., Walsh, P. S., Levenson C. H., and Erlich, H. A. (1989) Genetic analysis of amplified DNA with immobilized sequence-specific oligonucleotide probes. Proc. Natl. Acad. Sci. USA 86, 6230–6234.

    PubMed  CrossRef  CAS  Google Scholar 

  17. Gross, A. M., and Guerrieri, R. A. (1996) HLA DQA1 and Polymarker validations for forensic casework: standard specimens, reproducibility, and mixed specimens. J. Forensic Sci. 41, 1022–1026.

    PubMed  CAS  Google Scholar 

  18. Budowle, B., Giusti, A. M., and Allen R. C. (1990). Analysis of PCR products (pMCT118) by polyacrylamide gel electrophoresis, in Advances in Forensic Haemogenetics (Polesky, H. F., and Mayr, W. R., eds), Springer, Berlin, 148–150.

    Google Scholar 

  19. Hauge X. Y., and Litt, M. (1993) A study of the origin of “shadow bands” seen when typing dinucleotide repeat polymorphisms by the PCR. Hum. Mol. Genet. 2, 411–415.

    PubMed  CrossRef  CAS  Google Scholar 

  20. Urquhart, A., Kimpton, C., Downes, T. J., and Gill, P. (1994) Variation in short tandem repeat sequences-a survey of twelve microsatellite loci for use as forensic identification markers. Int. J. Legal Med. 107, 13–20.

    PubMed  CrossRef  CAS  Google Scholar 

  21. Brinkmann, B., Klintschar, M., Neuhuber, F., Hühne, J., and Rolf, B. (1998) Mutation rate in human microsatellites: influence of the structure and length of the tandem repeat. Am. J. Hum. Genet. 62, 1408–1415.

    PubMed  CrossRef  CAS  Google Scholar 

  22. Lareu, M. V., Pestoni, C., Phillips, C., Barros, F., Synder Combe-Court, D., Lincoln, P., et al. (1998) Normal and anomalous electrophoretic behaviour of PCRbased DNA polymorphisms in polyacrylamide gels. Electrophoresis 19, 1566–1573.

    PubMed  CrossRef  CAS  Google Scholar 

  23. Gill, P., Sparkes, R., and Kimpton, C. (1997) Development of guidelines to designate alleles using an STR multiplex system. Forensic Sci. Int. 89, 185–197.

    PubMed  CrossRef  CAS  Google Scholar 

  24. Gill, P., Whitaker, J., Flaxman, C., Brown, N., and Buckleton, J. (2000) An investigation of the rigor of interpretation rules for STRs derived from less than 100 pg of DNA. Forensic Sci. Int. 112, 17–40.

    PubMed  CrossRef  CAS  Google Scholar 

  25. Kayser, M., Cagliá, A., Corach, D., Fretwell, N., Gehrig, C., Graziosi, G., et al. (1997) Evaluation of Y-chromosomal STRs: a multicenter study. Int. J. Legal Med. 110, 125–133.

    PubMed  CrossRef  CAS  Google Scholar 

  26. White, P. S., Tatum, O. L., Deaven, L. L., and Longmire, J. L. (1999) New, malespecific microsatellite markers from the human Y chromosome. Genomics 57, 433–437.

    PubMed  CrossRef  CAS  Google Scholar 

  27. Ayub, Q., Mohyuddin, A., Qamar, R., Mazhar, K., Zerjal, T., Mehdi, S., et al. (2000) Identification and characterization of novel human Y chromosomal microsatellites from sequences database information. Nucl. Acids Res. 28, e8.

    PubMed  CrossRef  CAS  Google Scholar 

  28. Roewer, L., Krawczak, M., Willuweit, S., Nagy, M., Alves, C., Amorim, A., et al. (2001) Online reference database of European Y-chromosomal short tandem repeat (STR) haplotypes. Forensic Sci. Int. 118, 106–113

    PubMed  CrossRef  CAS  Google Scholar 

  29. Roewer, L. (2001) Y chromosome polymorphisms. Forensic Sci. Int. 118, 105.

    CrossRef  Google Scholar 

  30. Hering, S., and Szibor, R. (2000) Development of the X-linked tetrameric microsatellite marker DXS9898 for forensic purposes. J. Forensic Sci. 45, 929–931.

    PubMed  CAS  Google Scholar 

  31. Carracedo, A., D'Aloja, E., Dupuy, B., Jangblad, A., Karjalainen, M., Lambert, C., et al. (1998) Reproducibility between laboratories of mtDNA analysis: a report of the European DNA Profiling Group (EDNAP). Forensic Sci. Int. 97, 165–170.

    PubMed  CrossRef  CAS  Google Scholar 

  32. Holland, M. M., and Parsons, T. J. (1999) Mitochondrial DNA analysis-validation and use for forensic casework. Forensic Sci. Rev. 11, 1–25.

    Google Scholar 

  33. Carracedo, A., Bär, W., Lincoln, P. J., Mayr, W., Morling, N., Olaisen, B., et al. (2000). DNA Commission of the International Society for Forensic Genetics: guidelines for mitochondrial DNA typing. Forensic Sci. Int. 110, 79–85.

    PubMed  CrossRef  CAS  Google Scholar 

  34. Tully, G., Bär, W., Brinkmann, B., Carracedo, A., Gill, P., Morling, N., Parson, W., and Schneider, P. (2001) Considerations by the European DNA Profiling (EDNAP) group on the working practices, nomenclature and interpretation of mitochodrial DNA profiles. Forensic Sci. Int. 124, 83–91.

    PubMed  CrossRef  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2005 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Carracedo, A., Sánchez-Diz, P. (2005). Forensic DNA-Typing Technologies. In: Carracedo, A. (eds) Forensic DNA Typing Protocols. Methods in Molecular Biology, vol 297. Humana Press. https://doi.org/10.1385/1-59259-867-6:001

Download citation

  • DOI: https://doi.org/10.1385/1-59259-867-6:001

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-264-3

  • Online ISBN: 978-1-59259-867-0

  • eBook Packages: Springer Protocols