Forensic DNA-Typing Technologies

A Review
  • Angel Carracedo
  • Paula Sánchez-Diz
Part of the Methods in Molecular Biology book series (MIMB, volume 297)


Since the discovery of deoxyribonucleic acid (DNA) profiling in 1985, forensic genetics has experienced a continuous technical revolution, both in the type of DNA markers used and in the methodologies or its detection. Highly informative and robust DNAtyping systems have been developed that have proven to be very effective in the individualization of biological material of human origin. DNA analysis has become the standard method in forensic genetics used by laboratories for the majority of forensic genetic expertise and especially in criminal forensic casework (stain analysis and hairs) and identification.

Key Words

DNA analysis DNA profiling DNA typing forensic genetics 


  1. 1.
    Jeffreys, A. J., Wilson, V., and Thein, S. L. (1985) Hypervariable minisatellite regions in human DNA. Nature 314, 67–73.PubMedCrossRefGoogle Scholar
  2. 2.
    The International Human Genome Mapping Consortium. (2001) Nature 409, 934.CrossRefGoogle Scholar
  3. 3.
    Litt, M., and Luty, J. A. (1989) A hypervariable minisatellite revealed by in vitro amplification of a dinucleotide repeat within the cardiac muscle actin gene. Am. J. Hum. Genet. 44, 397–401.PubMedGoogle Scholar
  4. 4.
    Tautz, D. (1989) Hypervariability of simple sequences as a general source for polymorphic DNA markers. Nucleic Acid Res. 17, 6463–6471.PubMedCrossRefGoogle Scholar
  5. 5.
    Nakamura, Y., Leppert, M., O'Connell, P., Wolff, R., Holm, T., Culver, M., et al. (1987) Variable number of tandem repeats (VNTR) markers for human gene mapping. Science 235, 1616–1622.PubMedCrossRefGoogle Scholar
  6. 6.
    Beckman J. S., and Weber, J. L. (1992) Survey of human and rat microsatellites. Genomics 12, 627–631.PubMedCrossRefGoogle Scholar
  7. 7.
    Jeffreys, A. J., Tamaki, K., MacLeod, A., Monckton, D. G., Neil, D. L., and Armour, J. A.L. (1994) Complex gene conversion events in germline mutation at human minisatellites. Nat. Genet. 6, 136–145.PubMedCrossRefGoogle Scholar
  8. 8.
    Di Rienzo, A., Peterson, A. C., Garza, J. C., Valdes, A. M., Slatkin, M., and Freimer, N. B. (1994) Mutational processes of simple-sequence repeat loci in human populations. Proc. Natl. Acad. Sci. USA 91, 3166–3170.PubMedCrossRefGoogle Scholar
  9. 9.
    Southern, E. M. (1975) Detection of specific sequences among DNA fragments separated by gel electrophoresis. J. Mol. Biol. 98, 503–517.PubMedCrossRefGoogle Scholar
  10. 10.
    Mullis, K., and Faloona, F. (1987) Specific synthesis of DNA in vitro via polymerase-catalyzed chain reaction, in Methods in Enzymology (Wu, R., ed.), Academic Press, New York, pp. 335–350.Google Scholar
  11. 11.
    Kleppe, K., Ohstuka, E., Kleppe, R., Molineux, L., and Khorana, H. G. (1971) Studies on polynucleotides. XCVI. Repair replications of short synthetic DNA’s as catalyzed by DNA polymerases. J. Mol. Biol. 56, 341–361.PubMedCrossRefGoogle Scholar
  12. 12.
    Hagelberg, E., Sykes, B., and Hedges, R. (1989) Ancient bone DNA amplified. Nature 342, 485.PubMedCrossRefGoogle Scholar
  13. 13.
    Alvarez-García, A., Muñoz, I., Pestoni, C., Lareu, M. V., Rodríguez-Calvo, M. S., and Carracedo, A. (1996) Effect of environmental factors on PCR-DNA analysis from dental pulp. Int. J. Legal Med. 109, 125–129.PubMedCrossRefGoogle Scholar
  14. 14.
    Conner, B. J., Reyes, A. A., Morin, C., Itakura, K., Teplitz, R. L., and Wallace, R. B. (1983) Detection of sickle cell beta S-globin allele by hybridization with synthetic oligonucleotides. Proc. Natl. Acad. Sci. USA 80, 278–282.PubMedCrossRefGoogle Scholar
  15. 15.
    Saiki, R., Bugawan, T. L., Horn, T. G., Mullis, K. B., and Erlich, H. A. (1986) Analysis of enzymatically amplified beta-globin and HLA-DQ alpha DNA with allele-specific oligonucleotide probes. Nature 324, 163.PubMedCrossRefGoogle Scholar
  16. 16.
    Saiki, R. K., Walsh, P. S., Levenson C. H., and Erlich, H. A. (1989) Genetic analysis of amplified DNA with immobilized sequence-specific oligonucleotide probes. Proc. Natl. Acad. Sci. USA 86, 6230–6234.PubMedCrossRefGoogle Scholar
  17. 17.
    Gross, A. M., and Guerrieri, R. A. (1996) HLA DQA1 and Polymarker validations for forensic casework: standard specimens, reproducibility, and mixed specimens. J. Forensic Sci. 41, 1022–1026.PubMedGoogle Scholar
  18. 18.
    Budowle, B., Giusti, A. M., and Allen R. C. (1990). Analysis of PCR products (pMCT118) by polyacrylamide gel electrophoresis, in Advances in Forensic Haemogenetics (Polesky, H. F., and Mayr, W. R., eds), Springer, Berlin, 148–150.Google Scholar
  19. 19.
    Hauge X. Y., and Litt, M. (1993) A study of the origin of “shadow bands” seen when typing dinucleotide repeat polymorphisms by the PCR. Hum. Mol. Genet. 2, 411–415.PubMedCrossRefGoogle Scholar
  20. 20.
    Urquhart, A., Kimpton, C., Downes, T. J., and Gill, P. (1994) Variation in short tandem repeat sequences-a survey of twelve microsatellite loci for use as forensic identification markers. Int. J. Legal Med. 107, 13–20.PubMedCrossRefGoogle Scholar
  21. 21.
    Brinkmann, B., Klintschar, M., Neuhuber, F., Hühne, J., and Rolf, B. (1998) Mutation rate in human microsatellites: influence of the structure and length of the tandem repeat. Am. J. Hum. Genet. 62, 1408–1415.PubMedCrossRefGoogle Scholar
  22. 22.
    Lareu, M. V., Pestoni, C., Phillips, C., Barros, F., Synder Combe-Court, D., Lincoln, P., et al. (1998) Normal and anomalous electrophoretic behaviour of PCRbased DNA polymorphisms in polyacrylamide gels. Electrophoresis 19, 1566–1573.PubMedCrossRefGoogle Scholar
  23. 23.
    Gill, P., Sparkes, R., and Kimpton, C. (1997) Development of guidelines to designate alleles using an STR multiplex system. Forensic Sci. Int. 89, 185–197.PubMedCrossRefGoogle Scholar
  24. 24.
    Gill, P., Whitaker, J., Flaxman, C., Brown, N., and Buckleton, J. (2000) An investigation of the rigor of interpretation rules for STRs derived from less than 100 pg of DNA. Forensic Sci. Int. 112, 17–40.PubMedCrossRefGoogle Scholar
  25. 25.
    Kayser, M., Cagliá, A., Corach, D., Fretwell, N., Gehrig, C., Graziosi, G., et al. (1997) Evaluation of Y-chromosomal STRs: a multicenter study. Int. J. Legal Med. 110, 125–133.PubMedCrossRefGoogle Scholar
  26. 26.
    White, P. S., Tatum, O. L., Deaven, L. L., and Longmire, J. L. (1999) New, malespecific microsatellite markers from the human Y chromosome. Genomics 57, 433–437.PubMedCrossRefGoogle Scholar
  27. 27.
    Ayub, Q., Mohyuddin, A., Qamar, R., Mazhar, K., Zerjal, T., Mehdi, S., et al. (2000) Identification and characterization of novel human Y chromosomal microsatellites from sequences database information. Nucl. Acids Res. 28, e8.PubMedCrossRefGoogle Scholar
  28. 28.
    Roewer, L., Krawczak, M., Willuweit, S., Nagy, M., Alves, C., Amorim, A., et al. (2001) Online reference database of European Y-chromosomal short tandem repeat (STR) haplotypes. Forensic Sci. Int. 118, 106–113PubMedCrossRefGoogle Scholar
  29. 29.
    Roewer, L. (2001) Y chromosome polymorphisms. Forensic Sci. Int. 118, 105.CrossRefGoogle Scholar
  30. 30.
    Hering, S., and Szibor, R. (2000) Development of the X-linked tetrameric microsatellite marker DXS9898 for forensic purposes. J. Forensic Sci. 45, 929–931.PubMedGoogle Scholar
  31. 31.
    Carracedo, A., D'Aloja, E., Dupuy, B., Jangblad, A., Karjalainen, M., Lambert, C., et al. (1998) Reproducibility between laboratories of mtDNA analysis: a report of the European DNA Profiling Group (EDNAP). Forensic Sci. Int. 97, 165–170.PubMedCrossRefGoogle Scholar
  32. 32.
    Holland, M. M., and Parsons, T. J. (1999) Mitochondrial DNA analysis-validation and use for forensic casework. Forensic Sci. Rev. 11, 1–25.Google Scholar
  33. 33.
    Carracedo, A., Bär, W., Lincoln, P. J., Mayr, W., Morling, N., Olaisen, B., et al. (2000). DNA Commission of the International Society for Forensic Genetics: guidelines for mitochondrial DNA typing. Forensic Sci. Int. 110, 79–85.PubMedCrossRefGoogle Scholar
  34. 34.
    Tully, G., Bär, W., Brinkmann, B., Carracedo, A., Gill, P., Morling, N., Parson, W., and Schneider, P. (2001) Considerations by the European DNA Profiling (EDNAP) group on the working practices, nomenclature and interpretation of mitochodrial DNA profiles. Forensic Sci. Int. 124, 83–91.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2005

Authors and Affiliations

  • Angel Carracedo
    • 1
  • Paula Sánchez-Diz
    • 1
  1. 1.Institute of Legal MedicineFaculty of MedicinUniversity of Santiago de CompostelaSantiago de CompostelaSpain

Personalised recommendations